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1 Abstract

Students learning digital electronics currently have to use complex industrial software targeted to expe-

rienced engineers, which introduces extra cognitive load. This dissertation describes a highly extensible

open-source cross-platform hardware design application with a strong emphasis on usability and intuitive-

ness. The application allows students to design, analyse and simulate both combinatorial and synchronous

digital circuits. The extensibility and maintainability have been guaranteed by the adoption of a functional

reactive programming architecture, implemented in a strongly typed functional language. The usability of

the platform has been evaluated by collecting user feedback, by comparing it with alternative tools such as

Quartus, and by creating large designs such as a CPU. The evaluation shows that users are much more easily

able to familiarize and use this system in comparison to the alternatives.
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2 Introduction

As part of their university studies, first year electronics engineers learn the foundations of digital electronics

both in lectures and in practical laboratories. Throughout these laboratories, students design and simu-

late digital circuits. This enables them to grasp the concepts surrounding the use of combinatorial and

synchronous logic, which are the bases for every complex electronic system.

During the laboratory sessions, Imperial College EE students use a hardware design platform called

Quartus [56]. Quartus is an industrial software targeted to an audience of experienced hardware engineers.

Therefore, it contains an abundance of features, such as circuit timing analysis, which are widely used in

industry. However, a large amount of these features are unnecessary and introduce extra cognitive load for

first year students. A survey that I conducted among university students showed that 88% of them tend

to get confused in Quartus complex menus system, while 63% struggles to understand the error messages

provided by the application. Additionally, 75% of the surveyed students agreed that a simpler application

would have allowed them to learn digital electronics concepts with less guidance, as well as improving their

overall laboratory experience (survey results are analysed in section 8).

The aim of this project is to design and develop an alternative software application to support university

students in learning Digital Electronics and Computer Architecture. The application will allow students to

design synchronous digital circuits using a graphical circuit diagram editor. It will also enable students to

easily analyse, validate and simulate such circuits.

The application aims to improve on programs like Quartus by offering a simpler interface and a more

intuitive experience. This, in turn, simplifies students’ learning processes by removing the overheads of

familiarising with complex hardware design software. In fact, students should be able to use the application

without the need of any guide or reference manual. Furthermore, the application should be cross-platform

and easy to install, so every student can use it from their personal devices without having to SSH into the

university servers (which is currently necessary to use Quartus). This will allow students with an unstable

internet connection to be able to work remotely. Additionally, since every desirable feature is unlikely to be

implemented within the limited timespan of the project, maintainability and extensibility will also be among

the main focuses. This allows the application to be modified in the future as the teaching objectives evolve.

Finally, this innovative hardware design platform will be open-sourced so individuals and institutions outside

of Imperial College can use or change it as they wish.

This report will first present an analysis of the existing hardware design platforms, and what technology

could be used to create a cross-platform, more intuitive and easily maintainable application (section 3).

These considerations will converge into a precise set of requirements that the application ought to have in

order to be successfully employed for digital electronics teaching (section 4). An analysis of the main design

and implementation choices that have been made during the project will be presented in sections 5 and 6.

The produced application will then be evaluated in sections 7 and 8 via a number of experiments, such as

user feedback collection, an in-depth features comparison against the alternatives and the design of a large

digital circuit (a RISC CPU). Finally, a set of future extensions and improvements for the application will

be proposed in section 9.1, and guides to get started with it both as developers and users will be presented

in appendix A.
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3 Background

This section provides the background necessary for a reader to understand how the project fits in the current

digital electronics teaching world, as well as the technologies that will be used. We will firstly discuss some

of the characteristics of an ideal digital electronics application (subsection 3.1). This will set a framework to

analyse existing alternatives to this project’s deliverable and understand their shortcomings (subsection 3.2).

Lastly, an analysis of the technologies that will be used for the project will be presented, with justifications

of the choices and alternatives considered (subsections 3.3 and 3.4).

3.1 Didactic Considerations

This subsection will investigate what characteristics an ideal digital electronics teaching tool should have.

This considerations will be guided by the analysis of students experience during digital electronics laboratory

sessions (subsection 3.1.1), and by analysing what hardware design methodology is best fit for first year

students (subsection 3.1.2).

3.1.1 Laboratory Environment

As mentioned in the introduction, the application targets the academic environment. In particular, it ought

to be adopted for the teaching of Imperial College EE Digital Electronics and Computer Architecture (DECA)

module [21]. The DECA module involves around 40 hours of laboratories, which aim to strengthen students’

understanding of digital electronics concepts. During these laboratory sessions, students are required to

build complex computer systems from basic electronics components such as gates. Additionally, students

are expected to grasp how data can be represented and manipulated in the form of binary signals.

To reach such objectives, the laboratory sessions cover a large amount of material and this can put

students under time pressure. In fact, it is not uncommon for students to work extra hours outside the

allotted time to keep up with the material.

In such a scenario, it is important to facilitate students’ learning experience as much as possible by

providing tools that are intuitive to use and quick to get started with. This, in turn, lets students focus on

the didactic objectives of the laboratory sessions, and possibly lead to a more pleasurable overall laboratory

experience. The tools currently employed, such as Quartus, do not provide this simplicity and ease of use.

In fact, a survey conducted on Imperial College and Cambridge University students revealed that 75% of

them agreed that using a simpler tool would have allowed them to learn digital electronics concepts with less

guidance, as well as improving their overall laboratory experience (the data are presented in section 8.2).

Ideally, the hardware design application would be so intuitive that no user manual or guide should be

necessary for students to perform both familiar and unfamiliar tasks. Furthermore, such an ideal program

should allow students to quickly validate and experiment with their designs, receiving instantaneous feedback

if they introduce errors in the diagram. This way students can make the most out of laboratory sessions,

without wasting precious time waiting for the application’s calculations to complete.
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Circuit

Diagram
HDL

Easily visible dataflows 3 7

Closely relates to hardware 3 7

Gives overview picture 3 7

Requires no programming skills 3 7

Easy to parametrise 7 3

Good for large and complex projects 7 3

Table 1: Comparison of circuit diagrams and hardware description languages. Inspired from [85].

3.1.2 Schematic Circuit Diagrams vs Hardware Description Languages

In order for students to familiarise with digital electronics concepts, they need to design digital circuits. There

exists two main approaches to design a digital circuit: schematic circuit diagrams and hardware description

languages (HDL). The former is graphical representation of the digital circuits, which uses standardised

symbols to show components and interconnections among them. The latter is a textual representation of

the circuit, formed of statements and control structures.

Advantages and disadvantages for both approaches are reported in table 1. Circuit diagrams provide a

visual representation which is propaedeutic for learning [96, 72]. Even more importantly, circuit diagrams

require no programming skills, which is crucial given that EE students are supposed to get started with

digital electronics laboratories as early as the first term of first year. On the other hand, the shortcomings

of circuit diagrams (as per table 1) tend to have lesser impact for the size of the designs created during first

year digital electronics laboratories, which should not exceed the complexity of a basic RISC CPU.

Overall, circuit diagrams seem to be a better fit for beginners. Once the students develop a solid un-

derstanding of electronics concepts, it is reasonable to replace circuit diagrams with HDLs, which are more

powerful when dealing with large projects.

Currently, circuit diagrams are used in most first year DECA laboratories. Towards the end of the

academic year, students are introduced to a subset of Verilog HDL [82] in order to design some combinatorial

circuits like a CPU decoder. According to a conversation with the course lecturer, the reason for this choice

is both to ease the process of describing complex combinatorial logic and to introduce the HDL language

which will be used during the second academic year. Though this head start is desirable, it is not strictly

necessary to meet first year didactic objectives.

3.1.3 Summary

This section discussed some of the characteristics that an ideal digital electronics teaching tool should have.

Such a tool should allow students to design circuits via a diagram editor, which, in turn, helps them to get

a visual understanding of electronics concepts. Furthermore, the tool should be intuitive in order to remove

the overheads that currently negatively affect students’ learning experience. These results will be used to

inform the requirements capture in section 4.
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CircuitMaker [9] Quartus [56] KiCad EDA [46] SimulIDE [66] BrainBox [6]

Diagram editor 3 3 3 3 3

HDL editor 7 3 7 7 7

Simulation 7 3 7 3 3

Teaching oriented 7 7 7 3 3

Open-source 3 7 3 3 3

Actively maintained 3 3 3 3 3

Supported platforms Windows
Windows,

Linux

Windows,

Linux, MacOS

Windows,

Linux

Windows,

Linux, MacOS

Table 2: Comparison of some of the existing digital circuit design tools.

3.2 Existing Hardware Design Applications

Digital hardware design applications have been around for many years. This section will analyse some of

the currently available tools, discussing their strengths and shortcomings.

There exist several digital circuit design tools, each with a slightly different set of features. Some of

the most famous are reported in table 2. CircuitMaker [9], Quartus [56] and KiCad [46] are developed for

industrial usage, and tend to focus on an audience of experienced engineers. As such, they offer a variety of

features that are not required nor understood by a novice student. Having a large set of features generally

means that the user has to navigate more menus in order to achieve their goals. Given the relatively short

amount of time that students are expected to spend in the laboratory, it is important to ease their learning

process as much as possible by letting them focus on learning concepts, more than learning how to use

complex tools.

On the other hand, SimulIDE [66] and Brainbox [6] have been designed primarily as teaching tools.

Therefore, they tend to have much simpler user interfaces, and favour simplicity over the amount of features

supported.

I decided to further analyse the three tools that fit the largest number of prerequisites from table 2.

These tools are: Quartus [56], which is the program currently used in DECA laboratories; SimulIDE [66]

and BrainBox [6], which seem to provide a reasonable set of features, while being relatively simple to use.

Quartus is an industrial software which includes countless tools for working with field programmable gate

arrays (FPGAs), system on chip (SoCs), and complex programmable logic devices (CPLDs). Functionalities

include design, synthesis, optimization, verification, and simulation of digital circuits. Quartus is developed

and maintained by Intel, which provides access to it via a paid license. Quartus Lite (which has a subset of

Quartus’ functionalities) is freely available. Being such a powerful and large application, Quartus is arguably

difficult to familiarise with. A clear example is the numerous amount of menus that a user is required to go

through in order to set up a new project (see figure 1). A survey conducted among former Quartus users

showed that 88% of them get confused while trying to perform unfamiliar tasks with the application, and

they have to consult a guide to get unstuck (result presented in section 8.2). Therefore, students have to

waste precious laboratory time by having to learn application-specific procedures or repeatedly consulting a

user’s guide, rather than learning digital electronics concepts.

SimulIDE is an electronic circuit simulator intended for hobbyists or students that mainly focuses on

ease of use and simplicity. It allows users to draw diagrams with an intuitive drag and drop interface, and
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Figure 1: Series of menus in Quartus project setup wizard. Image credits [57].

to run simulations. On the other hand, the application seems to be lacking important features as the ability

to pack multiple wires into buses. Another major drawback is that SimulIDE is developed and maintained

by a single developer, who has received complaints about how difficult it is to contribute to the project [65].

Furthermore, SimulIDE is mostly developed in C++ and Assembly [47], and extending it to add the required

missing features may be a tedious task.

BrainBox is conceptually similar to SimulIDE: it offers an intuitive user interface for creating circuit

diagrams, and is primarily designed for students. Unfortunately, also BrainBox lacks key features such as

memories and buses. BrainBox is a cloud based application developed in JavaScript with Node.js backend.

Therefore, it can be hosted on a server or run locally if the user can set up their own node server. Being written

entirely in JavaScript, the project is probably more easily maintainable and extensible than SimulIDE.

However, because of its weak type system JavaScript is not the most reliable choice for a large-scale software

application (more on this in section 3.3.3).

During this research it was found that, though there exist more intuitive and user-friendly alternatives

to Quartus, they tend to be limited in terms of capabilities. These considerations will be used in the

requirements capture (section 4) to define an application which aims to have all the features required for

introducing students to digital electronics, while being intuitive to use, open-source, cross-platform and easy

to extend. Furthermore, an in-depth features analysis of the aforementioned applications will guide the

comparison with the final project deliverable in section 8.2.

3.3 Technological Considerations

When setting up a large software project, there are several technological choices that have to be made. In

this subsection I will introduce a series of technologies, their benefits and drawbacks. These considerations

will ultimately converge into a unique technology stack in subsection 3.4. As mentioned in sections 2 and
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3.2, the application should be cross-platform, easy to extend and to maintain. These three pillars will largely

influence the stack of technology being chosen.

Firstly, the choice of the software ecosystem will be discussed in subsections 3.3.1 and 3.3.2. Subsection

3.3.3 will discuss the choice for the programming language in the selected ecosystem. Lastly, subsection 3.3.4

will describe the technology chosen to create a maintainable user interface.

3.3.1 Software Ecosystem

One of the most important choices to make when starting the development of a new product is the software

ecosystem to use. In fact, the ecosystem largely affects the other technologies of the system such as the

programming language or the user interface infrastructure. The ideal ecosystem for this application ought

to have the following features:

Cross-Platform The product will likely be used by students and academic staff who own devices running

different operating systems. It is therefore important that the product is compatible and easy to set

up on all the main platforms (Windows, Linux and MacOS).

Open-Source The product is intended to be distributed with a GPLv3 license [36], to make it open-source

and free to use for institutions and individuals. Therefore, it should rely on equally open-source and

free technologies.

Powerful Libraries When creating a large software project it is important to be able to rely on mature

and maintained libraries to offload part of the implementation burden and focus more on the innovative

parts of the application.

Commonly Known As the application will probably benefit from extensions and changes in the future, it

is important to make use of widely known technologies to ease the maintenance and extension tasks.

The main candidates are the web ecosystem and desktop ecosystems such as the .NET, Java or C++

ones. Desktop applications tend to be very responsive and lightweight, and can be cross-platform if developed

with toolkits like JavaFX [41] or QT [55]. On the other hand, learning how to use these toolkits may be a

lengthy process and some of the technologies involved tend to be cumbersome (for example, C++ drawing

libraries have complicated API [48]).

The web ecosystem is a good fit for all the requirements. It is cross-platform by design, can benefit from

the power and simplicity of JavaScript, and many JavaScript tools and libraries are open-source. Moreover,

the relatively recent development of tools like Electron [22] allows developers to package web applications

and run them as desktop applications. Hence, it is possible to take advantage of the power of the web

ecosystem while deploying desktop applications. This is important since a cloud based web application

would be unusable without a stable internet connection, which is undesirable.

On the other hand, the heavy reliance of this ecosystem on the JavaScript programming language poses

some concerns regarding scalability and maintainability. In fact, despite being a very powerful and quick

solution for small web applications and websites, JavaScript has some fundamental issues related to its weak

type system that make it difficult to safely use it for large scale projects. Section 3.3.3 will describe JavaScript

limitations and how they can be overtaken while keeping all the advantages of the web ecosystem.
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3.3.2 Electron

Electron is an open-source framework developed and maintained by GitHub. It allows developers to build

cross-platform applications using HTML, CSS, and JavaScript. This can be achieved because Electron

bundles Node.js [52] and the Chromium web browser [8] into a single package. Node.js is a framework that

allows one to run JavaScript code outside the browser sandbox, therefore allowing it to access OS level API

like the file system ones. Chromium is used as a rendering engine to display content designed with HTML

and CSS. Therefore, Electron provides all the advantages of the web ecosystem in a desktop environment.

However, it also has a few downsides:

• A single Electron application will be often more than 60 MB in size. This is because, as aforementioned,

Electron packages both Node.js and Chromium into a single bundle.

• Like the Chromium web browser, Electron applications require a considerable amount of RAM to run.

For example, a simple hello world app needs around 70 MB of RAM, compared to the 20 MB required

by an equivalent QT-based counterpart [23].

• The UI may feel less responsive than native desktop applications on less powerful machines. The

responsiveness is similar to the one experienced when running web applications in the browser.

A promising alternative to Electron is Proton Native [54]. Proton is conceptually similar to Electron, but

instead of using Chromium as a rendering engine, it generates platform specific UI code. Native applications

tend to run faster and be more lightweight than their Electron counterparts. On the other hand, Proton is

a relatively new (first released in 2018), with a smaller community than Electron. Also, it has never been

used for big and successful products such as the Electron-based Visual Studio Code [73], Atom [4], Slack

Desktop [67] and WhatsApp Desktop [77].

In summary, the web ecosystem has been chosen for the application. Thanks to the adoption of Electron,

the project deliverable can be packaged and deployed as a desktop application while still maintaining the ben-

efits of the web ecosystem, such as being cross-platform. This decision will influence the other technological

choices of this project.

3.3.3 Programming Language

Sections 3.3.1 and 3.3.2 provided a rationale for the choice of the software ecosystem being used for the

project. This section will analyse the choice of the main programming language to use for the implementation

of the application.

The web ecosystem relies heavily on the powerful and versatile JavaScript programming language.

JavaScript has several characteristics that justify its ubiquitousness in the current development world, such

as:

Beginner-Friendly Syntax The language is notoriously easier to learn and use than other languages like

C or Java. Furthermore, no other tool aside from a web browser is required to get started with it.

Interpreted There exist many powerful JavaScript interpreters, such as Google’s V8 engine (which powers

both Google Chrome and Chromium) [70]. An interpreted language is generally faster for development

because it allows developers to manually test the code quickly, avoiding expensive recompilations.
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Automatic Memory Management The developer does not have to worry about garbage collection and

other low level issues.

Active Community JavaScript gets improved constantly, and new libraries/frameworks are released on a

weekly basis. In 2018, more than 1 million Node.js packages were downloaded every day [51].

However, JavaScript has several shortcomings related to its dynamic type system. Dynamic typing means

that data types are determined at runtime, instead of compile time. This introduces a class of runtime errors

that would be otherwise blocked by the compiler. JavaScript tries to partially mitigate this issue by providing

some obscure type conversions. In fact, it is perfectly valid to compare an integer with an array, and the

expression [ ] == 0 evaluates to true [42]. Additionally, dynamically typed code is less self-documenting

since there are no types in the function signatures. The developer has to manually add them in the function

docstring and ensure that they remain consistent in future changes of the code.

More specifically, JavaScript is a prototype-based programming language [89]. Though such languages

are very flexible, they tend to be affected by a class of security vulnerabilities called prototype poisoning.

Exploiting a prototype poisoning vulnerability can often lead to arbitrary malicious code execution [93].

There exist techniques to mitigate this issue, for example using Defensive JavaScript [93], a typed subset of

JavaScript, but they constraint the number of language features you can access.

In recent years, many statically typed languages which can be compiled to JavaScript were created to

mitigate its main weaknesses while taking advantage of its strengths. Famous examples include TypeScript

[69], ClojureScript [10], Elm [24] and Dart [13].

Similarly, functional programming languages tend to have very strong static type systems, and several of

them can nowadays be compiled to JavaScript. The key idea behind functional programming languages is

immutability: functional code is composed of a series of pure functions which take an input and transform

it into its output without side-effects. This allows developers to clearly separate the data (input) from

transformations on the data (functions). In addition to mitigating JavaScript issues related to dynamic

typing, functional programming languages provide a series of advantages:

• The code is generally easier to reason about, in comparison to object-oriented code. Since functions

transform immutable data, programmers do not have to worry about state maintenance issues.

• The code is easier to test. To test a function one simply needs to provide an input and compare it to

the expected output. This means that developers do not have to worry about bringing the system into

a certain state and checking that it changes as expected.

• The code is easier to understand and maintain. Usually all that is required to refactor code is to change

the types into the new desired ones, and follow the compiler indications about what other parts of the

code needs to be changed.

• Static type checking provides stronger code correctness guarantees. The compiler is very strict about

making sure types are as expected and all cases are considered in pattern matching. This drastically

reduces the possibility of introducing bugs and, the vast majority of the time, the code works on the

first attempt.
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During the third year High Level Programming course I became familiar with the F# programming

language. F# is a hybrid language: it is primarily intended to be used as a functional programming

language but it also supports mutable data and Object Oriented Programming constructs such as classes.

Nonetheless, the use of mutable data is discouraged by the syntax of the language itself, as the developer

has to explicitly mark such variables with the ‘mutable’ keyword. Finally, F# has a strong Hindley-Milner

type system, which allows static type inference [88]. This provides strong code correctness guarantees, as

explained earlier.

F# code can be compiled to JavaScript via the powerful Fable compiler [27]. Therefore, this tool allows

developers to simultaneously benefit from the power of F# and the versatility of JavaScript. Other strongly

typed functional languages such as Haskell [35] and OCaml [12] can be compiled to JavaScript too, but I am

not familiar with either. Furthermore, the application will likely be maintained by Imperial College students

who can learn F# from the High Level Programming course.

In summary, JavaScript is a versatile language, but its dynamic typing makes it difficult for a developer

to ensure code correctness as the codebase grows. On the other hand, functional programming languages

such as F# feature a static type system which greatly helps the developer in maintaining a large codebase.

Additionally, F# can be compiled to JavaScript via tools like Fable. The choice of F# as the main pro-

gramming language for the project heavily affects the Implementation of the application (section 5). Finally,

section 8.4 will highlight the benefits of such a choice specifically for the development of DEflow.

3.3.4 User Interface Infrastructure

A crucial component of any user-facing application is the Graphical User Interface (GUI or UI), which has the

role of transforming user intentions into changes to the application state. It is unfortunately very common

to underestimate the importance of writing deeply reasoned and structured UI code, but this mistake leads

to the production of anti-patterns that reduce productivity and make the code more prone to bugs [83].

One of the key challenges in creating robust and maintainable user interfaces comes from the inherent

event-driven nature of the UI logic. In other words, the UI logic has to handle an unorganised stream of

events, and doing so in an organised and clean way is a difficult task.

One of the most promising approaches to UI design is Functional Reactive Programming (FRP). This

concept was first introduced in 1997 in the animation field [90], and has since been successfully employed in

several other fields such as robotics [95], video games [86] and music synthesis [92]. This paradigm gained

widespread attention in the UI domain after the release of the Elm programming language in 2012 [87, 24].

FRP is:

Declarative The developer specifies what the desired result of the computation is rather than how the

computation should be performed.

Reactive Computations are triggered as result of user interactions.

In order to better understand what FRP is and what advantages it can bring in the UI domain, we will

consider a simple example where the text content of the outputTextArea is dynamically updated to match

what the user types into the inputTextArea (see figure 2). The pseudocode for a FRP implementation

would look like the following:
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Figure 2: Simple application.

inputTextArea (initialValue = "")

outputTextArea (value = inputTextArea.value)

The underlying FRP runtime takes care of updating the output upon changes to the input. In contrast, a

more traditional event-driven approach would look like this:

inputTextArea (initialValue = "")

outputTextArea (initialValue = "")

event handler: user changes value of inputTextArea {

text = getValueOf(inputTextArea)

setValueOf(outputTextArea, text)

}

It is apparent that FRP moves the focus on the desired result (the outputTextArea displays the same

text of the inputTextArea), leaving out how to obtain such a result (the handling of events). The power of

FRP becomes more evident when the UI requires many complex interactions.

A more subtle but equally crucial difference is that the FRP approach is ‘functional’. Consider the same

example as before, but let the initialValue of the inputTextArea be “abc” (see figure 3). Before any

user interaction, the value of outputTextArea in the traditional approach will be the outputTextArea’s

initialValue, which does not necessarily match the one of the inputTextArea, breaking the semantic of

the application. This is because the result of the traditional implementation depends on the history of

past events. In other words, if the event handler has never been triggered in the past, the content of the

outputTextArea is not guaranteed to be as expected. This issue can be fixed by introducing the following

event handler:

event handler: initialisation of outputTextArea {

text = getValueOf(inputTextArea)

setValueOf(outputTextArea, text)

}
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Figure 3: Simple GUI, before any user interaction and with initialValue of inputTextArea set to “abc”.

However, having to explicitly handle all of the corner cases leads to more complex and hard-to-maintain

code.

On the other hand, the FRP implementation guarantees that, no matter what happened in the past, the

value of the outputTextArea matches the one of the inputTextArea. In fact, the whole UI is fully specified

by the current value of the inputTextArea. The FRP approach is conceptually similar to specifying a

function that, given a certain input, always produces the corresponding output irrespective of the history of

the system.

In summary, the adoption of a Functional Reactive Programming architecture allows to define UI in a

declarative way, abstracting from the low level event handling mechanisms. This, in turn, greatly helps

reasoning about the UI code itself, and provides much stronger correctness guarantees. A more thorough

analysis of this paradigm will be proposed in the section 3.4, when looking at the specific FRP technology

adopted for the project.

3.3.5 Summary

One of the most important choices for a large software project is its technological infrastructure. In this

subsection a series of alternatives have been presented, which will be used to define the complete technology

stack in section 3.4.

3.4 Technology Stack

Subsection 3.3 described a series of technologies, including the web ecosystem, the F# programming language

and the Functional Reactive Programming paradigm. In this subsection, these technologies and concepts

will be used to define the technology stack for this project.

As briefly mentioned in subsection 3.3.3, it is possible to make use of the F# functional programming

language together with the web ecosystem by using the Fable compiler. Fable transparently transforms F#

code into a human readable and modern JavaScript code, which follows the recent language standards and

does not make use of obscure language features. The use of both F# and JavaScript in the same application,

implies that there will be two types of dependencies, one for each language. Luckily, Fable is a mature and

commonly used tool, so several solutions exist to hide the complexity given by the interoperation of the two

languages. For example, Femto [31] is a package manager that allows developers to handle both JavaScript

and F# dependencies in the same way.
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Furthermore, Fable is extremely well integrated with Electron. As mentioned in section 3.3.2, Electron

is a tool that allows developers to package web applications and deploy them as cross-platform desktop

applications, therefore allowing them to access the file system and other OS level utilities.

Making use of the F# programming language, allows developers to rely on the Elmish library [25].

Elmish lets developers take advantage of the power of Functional Reactive Programming when designing

and creating UIs (see 3.3.4). As the name suggests, Elmish closely follows the FRP concepts introduced

by the Elm programming language, but exposes them as a library for a much more powerful and general

purpose language, F#. More details about Elmish will be given in the example below.

Together, this set of technologies forms the Fable-Elmish-Electron technology stack. This stack allows

to build FRP, cross-platform application with F#. This technology stack may feel complex, but it is very

developer-friendly thanks to the existence of tools (such as the aforementioned Femto) which do an excellent

job in hiding the complexity from the developers. This architecture is heavily functional, therefore it provides

the benefits described in section 3.3.3, such as type safety and strong correctness guarantees provided by the

compiler. The benefits of this technology stack will be further emphasized in section 8.4.

We will now examine an example Elmish application which can be compiled with Fable and run on

different platforms thanks to Electron. Elmish (like Elm), implements the FRP concepts via the Model-

View-Update architecture (MVU). The main components of this architecture are:

Model An immutable data structure that represents the application’s state at every given instant. In the

same way that a video is composed by a series of immutable frames, the application interaction is a

succession of immutable models.

View A pure function which takes the model as input, and generates a new UI layout. This F# function,

uses a renderer library such as React to declaratively build a UI [60].

Update A pure function that takes the current model and a new command as input, and outputs a new

model.

In the Elmish library, the commands that trigger updates are called messages. A message represents,

for example, the action of clicking a button. When a message is dispatched, it gets passed to the update

function, which produces a new model. This new model is then rendered by the view function. Figure 4

represents this process schematically.

To better understand how this loop of operations works, we will analyse a simple application that keeps

track of how many times a button is clicked (see figure 5). The model is an integer, which is initialised to

zero:

type Model = { Count : int }

let init () = { Count = 0 } // Returns the initialised model.

We need to define what type of messages are expected. In this application, we require a single Increment

message:

type Messages = | Increment

The view function needs to display the count and a button:
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Figure 4: Model-View-Update interactions in the Elmish architecture. Image credits: [25].

Figure 5: Simple Elmish application.

let view model dispatch =

// The function takes as input:

// - the current model.

// - a dispatch function, which can deliver messages to trigger updates.

// Creates an HTML div element containing some text and a button.

div [] [

text "Count: %d" model.Count

button [ OnClick (fun _ -> dispatch Increment) ]

[ text "Increment" ]

]

Finally, the update function handles incoming Increment messages:

let update message model =

match message with

| Increment ->

// Creates and returns a new model with the incremented count.

{ Count = model.Count + 1 }

Upon launching the application, the UI gets rendered by calling view with the initial model (with Count

set to zero). This is step 1 in figure 4. When the user clicks the “Increment” button, the Increment message
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is dispatched (step 2). The Elmish library then triggers the update function (step 3), which produces the

updated model (step 4). Lastly the new model gets displayed by calling the view function (step 5), and the

application is ready for a new interaction.

It is interesting to note how the interface layout is generated in the view function. Elmish allows to define

HTML and CSS elements directly from F#, which provides two major advantages. First of all, as every

part of the F# code is type checked, the compiler ensures that the generated HTML code will not contain

common mistakes, such as missing closing tags or invalid attributes. Secondly, the CSS itself can be defined

and dynamically updated from F# itself. Traditionally, dynamically changing the CSS code would require

the use of CSS global variables and the insertion of a series of DOM selectors and event handlers, which

make the code more prone to bugs and less understandable (similarly to handling events in section 3.3.4).

The use of dynamic CSS in Elmish applications will be further discussed in section 5.2.2.

3.5 Summary

This section presented a series of considerations necessary to understand the topics that will be discussed

in the following sections. Subsection 3.1 concerned the analysis of what characteristics an ideal digital

electronics teaching tool should have, such as being intuitive. Subsection 3.2 provided an high-level analysis

of some of the currently available hardware design applications, determining that none was found to satisfy

all the ideal criteria. Additionally, a series of technologies have been described in subsection 3.3, which

converged into the Fable-Elmish-Electron technology stack described in section 3.4.

All the considerations made in this section will guide the definition of the requirements for the project

(section 4), as well as impacting both the implementation (see 5) and the evaluation (see 8) sections.
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4 Requirements Capture

In this section, a clear and comprehensive specification of the requirements of the project will be laid out.

These requirements are the foundation for all the design choices that will be analysed in the subsequent

sections.

As previously stated, the project concerns the creation of a hardware design platform to improve the

digital electronics learning experience of first year university students. The application is primarily targeted

to Imperial College EE students, but it is hoped that it will be adopted also by other teaching institutions

or even individuals interested in learning electronics topics. This information is of crucial importance, as it

is unrealistic to plan the creation of a fully fledged industrial hardware design application in less than two

months.

According to Imperial College EE Digital Electronics and Computer Architecture (DECA) course syllabus

[21], first year students are expected to learn about combinatorial and synchronous logic, as well as being able

to use block diagrams to design computer systems containing RAMs, ROMs, registers, adders, multiplexers

and state machines. To fulfil these requirements, the application must have the following essential features:

E1 Include a graphical interface which allows users to design synchronous digital circuits containing both

combinatorial logic and clocked components.

E2 Include a catalogue containing a set of builtin digital logic components, such as gates, flip-flops, registers,

ROMs, RAMs, multiplexers and demultiplexers. The user can use such catalogue to add components

to their designs.

E3 Allow the user to define their own components and reuse them in successive designs. For example, the

user could create an adder from basic combinatorial components and use it to build an ALU.

E4 Allow the user to package multiple wires into buses.

E5 Allow the user to insert probes and inputs into the circuit to test and simulate the logic.

E6 Provide an interface that allows users to simulate the circuit behaviour with user-specified inputs. The

user should also have the ability to step through the simulation one clock cycle at a time.

E7 Include an analysis tool that validates the circuit diagram and reports errors.

E8 Give the possibility to save and load designs, and handle design dependencies (for example using a

previously created adder to build an ALU).

E9 Be actively maintained. This is necessary as every large software will lack some useful features or contain

some bugs, and maintainers can act upon them.

These functionalities can be found in other programs like the aforementioned Quartus. The application

ought to distinguish itself via the following desirable features:

D1 Having a clear, responsive and intuitive user interface. A survey conducted on a group of university

students demonstrated that 88% of them get confused when using a complex system like Quartus

(details provided in section 8.2). 75% of the surveyed students agreed that their learning experience
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would have benefited from having used a simpler application. In fact, Quartus offers an abundance

of advanced features which are well beyond the laboratory scope and navigating through them adds

unnecessary complexity to the learning process.

D2 Providing helpful circuit design functionalities such as wires auto-routing and automatic bus width

inference.

D3 Providing helpful and thorough feedback for errors, which carefully explains the issues that may be

present in the design. Additionally, errors ought to be visualised directly on the circuit diagram, so

to maximise the amount of guidance given to the users. Applications that are targeted to experienced

hardware engineers often tend to assume a deep understanding of electronics concepts (which is usually

not the case for students at the beginning of their university education) and present errors and warnings

in a less explanatory fashion.

D4 Being relatively easy to extend, in particular by third year EE Imperial College students. This way, the

application can be easily adapted to reflect future changes in the module syllabus.

D5 Have a good documentation that allows maintainers to quickly familiarise with the main ideas and

design choices of the application.

D6 Being open-source.

D7 Being easy to install and run on all main platforms (Windows, Linux and MacOS). This is not the

case for Quartus, for example, which requires some level of expertise to be installed on Linux [78],

and cannot be run natively on MacOS (requires installing Windows on a virtual machine [1, 64]). All

students can therefore effortlessly install the software on their personal devices, hence being able to

use it without having to physically access the EE laboratory or connecting to EE servers via SSH.

This set of requirements and desirable features provide a comprehensive framework to guide both the

implementation and the evaluation of the application and its alternatives. Desirable feature D2, in particular,

leaves space for countless extension possibilities, some of which will be analysed in section 9.1.
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Figure 6: Compilation process for F# code to be run on Electron.

5 Implementation

The implementation of DEflow presented numerous challenges, both from an algorithmic and a software

engineering point of view. In this section I will discuss the most interesting aspects of this process.

First, the high level overview and main design choices of the application will be presented in subsection

5.1. Then, subsections 5.2 and 5.3 will discuss how the application interface has been created and what

extensions had to be made to the chosen circuit diagram drawing library to tailor it to the digital electronics

domain. Finally, the following subsections will focus on the algorithmic part of the application, such as

diagram analyses and simulation.

5.1 Analysis and Design

Since DEflow is a large application (more than eight thousand lines of code), it is important to understand

how the code has been designed to manage such complexity. This subsection will first present how F# code

can be compiled into a cross-platform application, which will allow us to understand the reasons of DEflow

codebase architecture.

As per requirements, the system must be relatively easy to maintain and extend. For these reasons, it

was decided to develop the application using the F# functional programming language, whose benefits are

covered in the section 3.3.3. The process of compiling F# code into a cross-platform desktop application

requires the use of several technologies (see figure 6). First of all, the Fable compiler compiles F# code to

JavaScript. All the produced JavaScript modules (and other static assets such as CSS files) are bundled

together using Webpack [76]. This application bundle is then packaged with Electron, which produces a

platform specific executable. As explained in section 3.3.2, Electron uses Node.js and Chromium to run and

render the application. In particular, the use of Node.js rather than the Chromium JavaScript engine allows

the application to access OS level API such as the file-system.

The application code structure is presented in figure 7. One of the most crucial design choices in DEflow,

is the separation of the user interface logic core from the core application logic and the testing logic.

The core application logic comprises the algorithms for analysing, simulating and inferring the widths of

wires in the circuit diagrams. The core logic is entirely written in F# and it is completely decoupled from

the Fable-Elmish-Electron technology stack (described in section 3.4). This allows it to be run and tested
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Figure 7: High level overview of the code structure.

Asset Type Description
Lines of

code

src/Common/* F# project
Collection of types and utilities used by all other

F# parts of the application.
137

src/WidthInferer/* F# project Logic to infer the width of wires in a circuit diagram. 451

src/Simulator/* F# project
Logic to analyse and simulate the behaviour of a

circuit diagram.
1997

src/Tests/* F# project Tests for the logic in WidthInferer and Simulator. 2106

src/Renderer/* F# project

User interface logic, draw2d F# wrapper and

utilities to interact with the file-system via Node.js

API.

2601

src/Main/* F# project
Boilerplate code to configure and start the Electron

application.
78

app/public/lib/

draw2d extensions/*
JS files

Extension of the draw2d JavaScript library to

support digital components and connections.
1023

app/* Web assets
Static web assets including stylesheet, icon and

application markup.
N/A

Table 3: Structure of the code in the repository. The colour coding matches the one in figure 7. In the
interest of space, only the most important folders are listed. The number of lines of code reported is

accurate as of 18/06/2020.
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under the .NET framework.

The testing logic provides a comprehensive set of tests for the core application logic. Like the core

application logic, it is completely written in F#. In order for the testing infrastructure to be versatile and

fast, it relies on the Expecto testing library [26], which cannot be compiled by Fable. Therefore, the testing

logic can only be run under the .NET framework. The testing infrastructure will be further investigated in

section 6.

The user interface (UI) logic is responsible for allowing the user to interact with the core application

logic. It is mainly written in F#, which interoperates with JavaScript via modules provided by the Fable

compiler. Because of this interaction with JavaScript, this logic cannot be run under the .NET framework.

The user interface logic adopts a Model-View-Update (MVU) architecture, making use of the F# Elmish

library. The benefits of using a Functional Reactive Programming architecture such as MVU, have been

thoroughly discussed in sections 3.3.4 and 3.4. Additionally, the UI logic relies on the Fulma style library

[33], which is an F# port of the famous Bulma CSS library [7]. Relying on a style library partially lifts the

burden of having to worry about creating an appealing and consistent interface. In fact, Fulma contains a

lot of pre-styled elements such as buttons and menus, which make the development much faster. The UI

logic will be further discussed in section 5.2.

The separation between core, testing and interface logic has two major benefits. Firstly, testing is made

much easier as it is possible to test the core application logic directly under .NET, using powerful libraries

such as Expecto [26]. Secondly, the separation reflects the conceptual disrelation of the various parts of the

application. Different modules communicate among each other via a set of well-defined high level API, hiding

the complex logic that lies underneath them. This, in turn, helps to better understand the application itself

and guarantees that changes in a module will not break others (as long as the module API is not changed).

An alternative to this modularised design is a monolithic architecture. Such architecture tends to be

easier to set up, as no explicit effort is made to separate different modules, but it is a poor choice on the

long term since it provides none of the guarantees above mentioned. A monolithic architecture would make

it impossible to run and test part of the code under .NET, as some libraries specifically designed to work

with Fable will not work in Microsoft’s framework. Furthermore, it would not be easy to guarantee that

changes in a part of the codebase will not affect other parts, making it difficult to change and improve the

application.

This conceptual separation is reflected in the code structure, which is presented in table 3. As it is

possible to see from the table, the application is mostly implemented in F#, with some JavaScript being

necessary to extend the drawing library (more on this in section 5.3).

In the next subsections, the most interesting and challenging aspects of the implementation of DEflow

modules will be thoroughly analysed.

5.2 MVU User Interface

As stated in section 5.1, Functional Reactive Programming (FRP) was chosen to develop a responsive and

maintainable UI. The advantages of a declarative approach for UIs have also been thoroughly described

section 3.3.4. FRP is possible in F# thanks to the Elmish library, which implements the MVU architecture

described in section 3.4. Elmish uses the React JavaScript framework [60] to render the user interface.

React is a framework developed and maintained by Facebook, which allows to handle the HTML DOM in a
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Figure 8: Compilation process of the user interface code.

declarative fashion. Figure 8 shows how these various technologies interact together in DEflow.

DEflow, in accord with the Model-View-Update (MVU) architecture, has a model which keeps the state

of almost the entire application. This gets transformed into an actual interface by the various view functions.

There exist, for example, a view for the catalogue from where the user selects the components they want to

add to the circuit, one for the editor to change the content of ROM and RAM memories, and so on.

Each view exclusively uses the information in their relevant part of the model in order to build the

interface. Therefore, the different views are isolated from each other, and changing something in one piece

of the interface is guaranteed to not have any consequence on the rest. This, in turn, greatly simplifies the

development process and increases the confidence in making changes.

Finally, views may contain interactive elements such as buttons or text-boxes. Upon user interaction,

these elements can dispatch messages that will update the application model, which will be re-rendered via

the view functions. If done naively, this re-rendering process is expensive. Luckily, React only re-renders

DOM elements that actually changed (which usually form a very small part of the whole interface), massively

improving the MVU performance.

To better understand the MVU loop in DEflow, consider the example where a user is populating a text-

box with a number that is supposed to be two bits wide. Every time the user updates the content of the

text-box a message is dispatched and the application model is correspondingly updated. In case the user is

inserting an invalid number (for example a number that requires more than two bits to be represented, like

5), the notification view will generate a popup to notify the user of the error. As soon as they insert a valid

number the notification view will remove such popup. Therefore, the MVU loop allows DEflow to have an

extremely responsive UI, which can immediately provide feedback to the users. This type of immediate error

feedback is also employed when the user performs other invalid actions, to promptly guide them toward the

resolution of the issues.

5.2.1 Stateful Library in a MVU User Interface

The MVU architecture works extremely well if the whole application state can be captured in the model data

structure. Unfortunately, this is not always possible for complex applications that rely on external libraries

which were not designed with a functional architecture in mind.

As mentioned in the requirements capture (requirement E1 in section 4), the application necessitates a

graphical interface which allows users to design digital circuits. A considerable amount of effort would be
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InteractiveSVG [40] 3 7 7 7 7 7 3 3 3 0.05 17
Raphael [58] 3 3 7 7 7 7 3 3 3 1.1 10.6k
Fabric [30] 3 3 7 7 7 7 3 3 3 2.4 15.6k
jsPlumb [45] 3 3 3 3 3 3 7 - 3 - -
draw2d [18] 3 3 3 3 3 3 3 3 3 6 367

Table 4: Comparison of some common JavaScript 2d graphics libraries.

required to design and implement a graphic library from scratch, therefore I decided to rely on an existing

library. Table 4 shows a comparison of several 2d graphics JavaScript libraries. Given its set of features and

its extremely helpful documentation [17], draw2d was selected for this project.

In order to create an interactive diagram component, one must instantiate the diagram object provided

by the chosen library and attach it to an HTML element rendered in the page. The library then modifies

the HTML element and effectively transforms it into the diagram UI. The diagram component is therefore a

JavaScript object that maintains its own state, which is mutable and separate from the MVU model. This

state contains information about what figures are displayed in the diagram and how they are connected.

Having a state which is updated independently from the MVU model breaks the MVU semantic of the

application itself. Nonetheless, there exist two main approaches that allow the usage of stateful libraries

without having to renounce to the MVU architecture:

• The first and most natural solution would be to reimplement the diagram component and expose its

state so it can be stored in the MVU model. This way, the diagram component would be no different

from other stateless components: every change in the diagram would trigger a message, update the

model and re-render the new view. Although this approach is nice in theory, it is really expensive

in practice in terms of both development time and application performance. In fact, every update

in the diagram would have to pass through an MVU iteration, possibly triggering costly re-rendering

operations. For example, the process of dragging an element in the diagram would trigger hundreds of

re-renders of a complex HTML object, degrading performance sensibly.

This is a known problem of declarative approaches to user interfaces. A clear example of this issue

comes from the Atom code editor, which was rewritten in 2015 without the declarative abstraction

introduced prior in 2014 [50], because the responsiveness seemed to suffer [38].

• The second solution is to allow the diagram component to maintain its own state and manipulate its

own HTML elements, while creating a wrapper to interact with it in a controlled manner [79, 39]. Such
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Figure 9: Clicking a menu element in the main application UI triggers a change in the diagram.

a wrapper is much quicker to implement, but it has to be handled carefully in order to preserve the

functional semantic of the application as much as possible.

In this approach, the state of the application remains split among two independent data structures,

agnostic of each other. In other words, the MVU application state is rendered and updated inde-

pendently from the diagram state, and vice versa. This is optimal for performance, as the diagram

component works the way it was designed to, without any extra MVU operation. The wrapper has

the role of mediating the interaction between the MVU application and the diagram component. This

interaction can happen in two directions:

The MVU application changes the diagram state. For example, if the user clicks a button to

add a figure to the diagram (see figure 9), a method of the wrapper is called. This instructs the

diagram to add the specified component, while the MVU model remains unchanged.

The diagram component changes the state of the MVU application. This may happen if the

user selects a component in the diagram and its properties get displayed in the main application

UI (see figure 10). In this scenario, the diagram component will dispatch an MVU message with

the information that needs to be displayed. This message will be handled in the update function,

which will produce an updated MVU model. The new model will then be rendered via the relevant

view functions. In this scenario, the wrapper has the role to provide the diagram component with

a function to dispatch an MVU message.
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Figure 10: Selecting a component in the diagram dispatches an MVU message and updates the main
application UI.

Given its advantages, the wrapper approach has been chosen for DEflow. Clearly, this choice imposes

a tradeoff between functional-style and efficiency. Having a small, carefully wrapped non-functional part of

the application logic is unideal, but it is a necessary tradeoff that arises from the need of efficiently using

stateful libraries.

5.2.2 User Interface Styling

As mentioned in section 5.1, DEflow relies on the Fulma styling library to generate cohesive, appealing and

informative interfaces. Fulma is an F# port of Bulma, which is a modern, modular and open-source CSS

library. Fulma provides a vast catalogue of pre-styled elements such as buttons and menus, which have been

created by UI experts. Therefore, using such a library can highly increase both productivity and deliverable

quality.

Additionally, the developer can also decide to override the styles provided by the library. This can be

done by defining CSS properties directly in the F# code. Since CSS properties are just normal F# data, it

therefore becomes very easy to dynamically change the style of the elements in the interface. For example,

when a user modifies a diagram, the circuit diagram should be the most prominent component of the UI,

and hence it should cover a large area of user interface (see figure 11). On the other hand, when running a

simulation, the simulation menu should cover a large amount of the interface, as users will have numerous

interactions with it (see figure 12). Dynamically updating the CSS properties of the various elements on the

page allows the developer to introduce such a behaviour.
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Figure 11: The diagram occupies a large area of the interface as the user is likely to have numerous
interactions with it during the circuit design phase.

Figure 12: The simulation menu is enlarged to allow the user to interact with it better. This way , large
binary inputs and outputs can be viewed.
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5.3 Extensions to the Drawing Library

In order for the application to be intuitive for the users, it must make use of standard digital electronic

notations such as common gate shapes [81], and thicker labeled connections to represent buses. The draw2d

library provides a vast set of functionalities, but unfortunately support for digital electronics components is

not among those. This subsection will present how this issue has been overcome.

In order to provide the necessary visualisations, draw2d has been extended with several modules. Such

extensions can be found in the app/public/lib/draw2d extensions folder. A series of JavaScript classes

have been defined which allow users to visualise gates and other common electronics components with their

standard shapes. The choice of using the ‘old-fashioned’ gate figures has been made as those are the ones

currently used in the DECA laboratories. Nonetheless, this can be changed with a minimal amount of effort

in case of necessity.

The extension classes derive the builtin draw2d.SVGFigure class in order to benefit from all of the

functionalities of the library. One extension also introduces the support for the dynamic creation of diagram

components, given a list of component inputs and outputs. This extension is necessary for the creation of

hierarchical components (described in section 5.7). Additionally, a series of functions to draw and label wires

have been added.

While developing such extensions, two bugs in the draw2d library have been found and reported to

draw2d developers [15, 16].

5.4 Serialisation and Deserialisation of the Circuit Diagram

A very important feature for the application is to give users the ability to save and load diagram designs

(requirement E8 from section 4). To do so, it is necessary to obtain a textual representation of a circuit

diagram, which can be written and read from a file. The draw2d library offers functions to serialise the

diagram object into a string and to subsequently reload such serialised state into a diagram. Unfortunately

these functions have several characteristics that make them not adapt for the application:

• The information that gets handled by these functions is just a subset of the entire diagram state. For

example, such serialisation would discard information about components’ labels.

• The serialization output tends to be considerably memory intensive, even for small diagrams. For

example, the serialisation of the circuit in figure 13 produces a 12 Kilobytes output.

• The output produced by the draw2d serialiser requires the specific draw2d deserialiser logic to be parsed

properly. Moreover, the deserialiser logic automatically populates the diagram with the deserialised

content. This is highly undesirable as DEflow often necessitates to access a circuit state directly from

the file without loading it into an actual circuit diagram.

To compensate for the shortcomings of this library functionality, I decided to implement my own serial-

isation and deserialisation functions. The custom serialiser first transforms the JavaScript diagram object

into an F# data structure. This data structure is then serialised to a Json object and dumped to a file. The

custom deserializer reads the desired file and parses its content back into the F# data structure. This data

structure can then be visualised in the circuit diagram, or used for other means. This approach is superior
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Figure 13: Simple circuit with an AND gate connected to two inputs and one output.

to using the draw2d functions since it stores all the necessary information in an easily parsable format, while

achieving a much smaller file size. In fact, the circuit in figure 13 only requires 2 Kilobytes of memory, just

17% of the size produced by the draw2d functions.

The logic that transforms the JavaScript diagram object into an F# data structure will also be used to

provide the input to the diagram analysis and simulation algorithms, described in subsections 5.5 and 5.6.

5.5 Diagram Analyses

As per specifications, one of the crucial features of the application is its ability to detect a variety of errors

that the user may introduce (requirement E7 from section 4). In order to do so, a set of analysis is run on

the circuit diagram. Most of these analyses will be presented in this subsection. In particular, high relevance

is given to the algorithm for the inference of the width of the wires in a circuit diagram, as it is of elevated

algorithmic interest.

5.5.1 Wires Width Inference

In order to facilitate the design of complex logic circuits, the application allows the user to package multiple

wires into buses. A bus can carry an arbitrary number of bits. The number of bits carried determines the

width of such a bus. This subsection will analyse the reasons why inferring such information is important,

as well as providing the algorithm required to do so.

Inferring the width of the wires in a diagram is necessary for two reasons. First, it is needed to ensure

that the user is not creating invalid designs. For example, an inattentive user may connect the output of a 3

bits register to an AND gate input. This is, of course, invalid and the user has to be warned of such a mistake

(figure 14). Secondly, inferring wire widths allows the application to label wires with their corresponding

widths, making it much simpler to develop complex digital circuits (figure 15).

Alternatively, the application could ask the user to specify the width of each wire they insert. Such a

decision would negatively impact the usability as users would have to spend time providing information that

could be automatically deducted. Furthermore, modifying a design may become cumbersome since changing

a component or a connection could lead to the need of manually updating several other bus widths in the

circuit diagram.

This issue is similar to the problem of type inference in some programming languages, including F#. In

fact, in order to favour usability, the compiler automatically deduces the types of the variables being used, so
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Figure 14: Error notification shown upon unsuccessful wires width inference.

the developer does not have to explicitly annotate them. Unfortunately, inference adds an extra complexity

to the design of a compiler or, in our case, a hardware design application.

Inferring the width of wires is trivial in some cases (for example, a wire connected to a two bits register

will carry two bits), but complex in others. Consider the example in figure 15. There, four wires with

different widths are merged into a single ten bits wide bus. Determining the width of the final wire is only

possible by recursively inferring the width of the intermediate wires. The width inference can be performed

with the following graph traversal algorithm, which can be seen as an enhanced depth first search [91]:

Variables:

wiresWidth: a map that keeps track of the inferred width of each wire in the diagram.

graph: a graph data structure representing the circuit diagram. The children of a graph node are the nodes

connected to its outgoing wires.

Algorithm:

1. Initialise each connection in wiresWidth to "Not-Inferred"

2. For each input node in the graph:

3. Extract the widths of all the incoming wires (if any) for the current node, using the wiresWidth map

4. Are the incoming wires width valid?

5. Yes: Proceed

6. No: Return error and terminate algorithm

7. Does the current node have enough information to determine the width of its outgoing wires?

8. Yes: Set the widths of the outgoing wires in the wiresWidth map

9. For each child node, if the wire leading to it is "Not-Inferred", repeat the algorithm

from step 3, using such a child as current node

10. No: Cannot proceed with recursion, return

The algorithm starts from the input nodes, and recursively tries to populate a map that keeps track of

the width of each wire in the diagram. It is possible that the user creates invalid diagrams, for example by

connecting the output of a 3 bits register to a single-bit AND gate input (figure 14). Such a problem will
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Figure 15: Circuit that requires non-trivial wires width inference.

be spotted by the algorithm with the check at step 4. In fact, the algorithm will ensure that an AND gate

receives only two single-bit inputs, otherwise it will return an appropriate error message and terminate.

In some cases a node may not have enough information to determine the width of its outgoing wires, hence

the recursion branch will not be explored further. This behaviour is reflected in step 10 of the algorithm. Such

a scenario may arise, for example, if the user only partially connects a ‘MergeWires’ node. A ‘MergeWires’

node is a diagram node that, taken two wires of width N and M produces an output wire with width N+M.

If one or both inputs are missing, it is impossible for the algorithm to determine the width of the outgoing

wire. There are three ‘MergeWires’ components in the diagram in figure 15.

The proposed algorithm is optimal in terms of time complexity. In fact, its asymptotic time complexity

is O(N + E) = O(E), where N is the number of nodes and E is the number of edges (in essence, wires) in

the graph. This property is guaranteed by the check at step 9 of the algorithm, which ensures an edge is

never ‘explored’ twice.

Nonetheless, the algorithm could be further optimized by only re-inferring the widths of the wires affected

by the user changes. This can be achieved by passing to the algorithm the wiresWidth map previously

obtained, together with the information specifying which connection has been changed. The algorithm is

then started from the node at the source of such a connection, and it will recalculate only the necessary

widths. Note that extra care has to be taken at step 9: in fact, a wire with an old inferred width has to be

re-explored, whilst wires with widths inferred during the current iteration have to be skipped. These two

scenarios can be distinguished through the use of a flag that keeps track of whether a wire width has been

recently re-inferred.

This optimization has not been implemented as the performance of the algorithm was measured to already

be significantly below the threshold of human perception (see section 8.3), so priority has been given to other

DEflow features. Nonetheless, it could be valuable to implement it in the future as it requires only minor

changes to the current algorithm.

It is interesting to further consider how the algorithm avoids getting stuck in loops that may be present
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in the diagram logic. This is possible because an edge width is inferred at most once, thanks to the check

performed at step 9 of the pseudocode.

The width inference logic is implemented in the WidthInferer module. This module has a very simple

API: a single function called inferConnectionsWidth which receives in input a circuit diagram and returns

a map where each connection is associated to its inferred width, or an error if there is a flaw in the diagram

that made the inference process impossible.

The UI module calls the inference function with the current diagram state and handles its result. In case

the inference process was successful, the buses in the diagram are highlighted and their width is annotated

on top of them (see figure 15). Otherwise, errors get visually presented both by highlighting the faulty wires

and with a notification popup explaining the issue (see figure 14). This error reporting method turned out

to be extremely effective, with 100% of the users reporting that they agreed that such errors “guided them

well toward fixing the problems in the design” (details in section 8.1.2).

5.5.2 Errors Detection

Once the user created their design they can decide to run a set of in depth analysis in search for potential

logic flaws. DEflow provides a series of diagram validations, including:

• Ensure that every component is fully connected. In other words, ensure that no component in the

diagram has floating inputs or outputs.

• Ensure that every net node is driven by precisely one signal. In fact, DEflow does not support tri-state

logic, as it is not part of the syllabus of first year EE Digital Electronics teaching.

• Ensure that input and output components have unique labels. This allows users to have a non-

ambiguous interface during the simulation (see section 5.6).

• Ensure that all wire widths can be successfully inferred. This is achieved by running the width inference

algorithm previously described, with the additional check that all wires must have an inferred width.

Two further validations will be described in sections 5.7.2 and 5.7.3, as they are related to the concept of

hierarchical components presented in section 5.7.

If any of the analysis discovers a flaw in the circuit, the issue is reported via an error message and by

highlighting the affected components and wires in the diagram.

These analyses are conceptually independent from each other, therefore it is extremely simple to add

further validations or change the existing ones. Each analysis function have the following interface: it accepts

in input a representation of the circuit state and optionally returns an error. All the analysis algorithms

have linear time complexity in the number of components or wires (depending on the analysis), which is

optimal.

5.6 Diagram Simulation

One of the core DEflow features is the ability to simulate digital circuits (requirements E5 and E6 from

section 4). Crucially, this allows users to experiment with their designs and learn the related Digital Elec-

tronics concepts. This subsection will analyse the algorithms necessary to perform both combinatorial and
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synchronous circuit simulations. Additionally, subsection 5.6.2 will show how these algorithms are exposed

to the rest of the codebase.

In order to simulate the logic they implemented, a user can inject signals in the circuit using input com-

ponents. The user can also attach output components, whose role is to accept a signal without propagating

it further. The signal reaching an output component can be then visualised in the simulation interface.

Output components can therefore be used to probe the signal on specific wires of the circuit.

The process of simulating a circuit has the following steps:

1. The state of the diagram has to be extracted and transformed into an F# data structure (like it was

described in section 5.4).

2. The various analyses described in section 5.5.2 are run to guarantee the validity of the design.

3. The extracted and validated state is transformed into a simulation graph.

4. A further set of validations is run on the simulation graph (described in sections 5.7.2 and 5.7.3).

5. The user feeds input signals in the simulation graph via input components and visualises the corre-

sponding changes via output components.

A user interface takes care of facilitating the task of feeding inputs into the simulation graph and visu-

alising its outputs. It is important to stress that such user interface is completely decoupled from the core

simulation logic itself, and can be independently modified and improved. In fact, the simulation logic itself

is contained the Simulator F# project, which can be run and tested under the .NET framework, without

any user interface (details about code modularisation can be found in section 5.1).

We already covered the ideas behind diagram state extraction (section 5.4) and diagram validation

(section 5.5). The next step of the simulation process is to build a simulation graph. A simulation graph is

a graph data structure composed by a series of nodes, each having a reducer function and a set of children

nodes. The reducer is a function specific to each type of circuit component, whose purpose is to take the

inputs of a node (the signals on the incoming wires) and transform them into the outputs of that node

(the signals that will be put on the outgoing wires). For example, the reducer for an AND gate will take

two single-bit inputs and produce a single-bit output. The children of a node are the set of nodes that are

connected to its outgoing wires.

Creating a simulation graph is of great help for the simulation process. In fact, the original diagram

state is a flat data structure which simply lists all the components and connections in the diagram. Such

flat data structure does not represent the flow of information in a digital circuit. For example, in order

to look up what components are connected to a given component A, it is necessary to search among all

the connections the ones that have component A as either source or destination. As this operation has to

be repeated many times during the simulation, this approach becomes prohibitively expensive for complex

diagrams. More importantly, this cost is completely avoidable by transforming the flat data structure into

a simulation graph.

With such infrastructure in place, the process of feeding an input signal into the simulation graph can

be performed with a recursive algorithm. This algorithm is an enhanced depth first search:
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Figure 16: Simple AND gate with grounded input and many outgoing wires.

Variables:

graph: the simulation graph data structure representing the circuit being simulated

Algorithm:

1. Start from the selected input node in the graph

2. Obtain the current input signals for the node

3. Use the node reducer to calculate the new output signals. Was any output produced?

4. Yes: For each child of the node, update its input signals and repeat the process from step 2

5. No: Return

Note that a component may not produce any output (step 5). This is the case for synchronous components

such as D-flip-flops. These components, in fact, only produce outputs on a clock tick (more on this in section

5.6.1). In this scenario, the inputs of the children nodes remain unchanged. The fact that only combinatorial

components produce new outputs, together with the assumption that the graph contains no combinatorial

loops (ensured by one of the analysis previously performed) guarantees the termination property of the

algorithm. This can be intuitively seen by visualising the simulation graph as a tree, where the root node

is the input node used to feed the new user input, and the leafs are the output nodes. Since there are no

combinatorial cycles and synchronous components do not generate any output, the propagation of the new

input will flow unidirectionally towards the leafs.

The algorithm has time complexity O(N + E) = O(E), where N is the number of nodes and E is the

number of edges in the simulation graph. This directly follows from the no-combinatorial-cycles assumption,

together with step 4 of the algorithm: we may explore each graph node at most once, and for each node we

may explore each of its outgoing edges at most once.

The algorithm has been further optimised by propagating the outputs of a reducer only if they changed.

Consider for example the diagram in figure 16. Assume the signal produced by the input node zero-input

consists of a single-bit permanently set to zero. This implies that, no matter what signal is generated by

input-node, the output of the AND gate will always be a single-bit signal set to zero. This means that

all AND gate’s outgoing connections will never be ‘explored’ as a result of a change in input-node. This

optimization makes the algorithm optimal in the sense that no extra work is performed to try to update

signals that will not change.

37



5.6.1 Synchronous Components

Particular care must be taken when handling synchronous components. Such components, in fact, do not

produce a new output every time one of their input changes, but only on a positive or negative edge of a

clock signal.

Like most FPGAs [32], DEflow adopts the concept of global clock. A global clock is a unique clock that

can be accessed by all components in a circuit. Furthermore, in DEflow, all synchronous components are

implicitly connected to the global clock. The biggest advantage of this decision is that it greatly simplifies

the simulation logic, since it introduces the notion of discrete time. In other words, the simulation time only

advances discretely at every clock tick, when each of the synchronous components updates their outputs.

This allows to eliminate the need of modelling signal propagation delays, which would have otherwise been

incorporated in the logic. Since DEflow is mainly targeted to Imperial College EE first year students, and

such timing issues are not in first year syllabus, it was decided to avoid this extra complication and focus

efforts elsewhere. Moreover, such concepts are not easy to familiarise with, and would probably end up

confusing students who approach digital electronics concepts for the first time.

On the other hand, having a global clock implicitly connected to all synchronous components blocks the

user from designing valid and relatively simple circuits such as ripple counters. Ripple counters are covered

in the first year EE DECA course, even though they are not present in the laboratory syllabus.

It is also arguable that first year students should explicitly handle and connect clock signals, instead of

having them implicitly connected by the application. This decision has no impact on the simulation logic,

as it would not change the fact that each synchronous component is connected to the global clock. Hence,

this is implementable by introducing an explicit ‘global clock generator’ component that can be added to

the diagram and connected to the clock ports of the synchronous components. Such component and its

connections can be then easily removed from the diagram state that gets passed to the simulation logic,

which will assume each synchronous component is implicitly connected to the global clock. In the interest

of time, I decided to focus on more essential features.

It is possible to simulate a global clock tick with the following algorithm:

Variables:

graph[t]: the simulation graph after t clock ticks

Algorithm:

1. Take a snapshot of the state of the simulation graph at the end of previous time step: graph[t-1]

2. For each synchronous node in the simulation graph:

3. Feed the node reducer with the inputs as they were in graph[t-1] and obtain its new outputs

4. Feed the produced outputs into the combinatorial logic as non-clock-tick inputs (using the simulation

algorithm previously described)

Taking a snapshot of the simulation graph before the clock tick ensures that all the synchronous components

are fed with the signals that were present on the wire just before the clock tick (step 1). This is equivalent

to having a clock signal that reaches each component precisely at the same time, so there is no possibility

of timing issues.
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After a synchronous component generates its new outputs and updates its internal state (step 3), such

outputs are propagated through the combinatorial logic similarly to how an input is fed in the graph (see

beginning of section 5.6).

The time complexity of the algorithm is O(S∗E+N), where S is the number of synchronous components,

E is the number of edges and N is the number of components (usually S is much smaller than N). This

follows from the fact that each of the S synchronous components produces an output which has to be fed

into the combinatorial logic. Feeding a signal into the combinatorial logic has O(E) time complexity (see

beginning of section 5.6). Finally, taking a snapshot of the circuit diagram requires iterating through all the

components, hence it has O(N) time complexity.

5.6.2 Simulation API

The simulation and analysis logic is contained in the Simulator F# project. This logic is exposed to other

parts of the application via some high-level API, which are described in table 5. These intuitive API hide

the complexity of the underlying algorithms. Any sort of user interface can be built on top of these, as they

provide a comprehensive set of functionalities to manipulate and extract the state of a simulation graph.

An example usage of these API would be:

1. Call prepareSimulation and obtain a simulation graph. When running this step, the simulator logic

will analyse the circuit running the algorithms described in section 5.5, and then transform the circuit

from the ‘flat’ representation into a simulation graph.

2. Call feedSimulationInput to inject a signal into the circuit and obtain the updated simulation graph.

This step will trigger the algorithm described at the beginning of section 5.6.

3. Call extractSimulationIOs to extract the new values of the simulation outputs and display them to

the user.

4. Call feedClockTick to advance the global clock in the simulation and obtain the updated simulation

graph. This step will trigger the algorithm described in section 5.6.1.

5. Call extractStatefulComponents to get the updated state of all the stateful components and display

them to the user.

5.7 Hierarchical Components

Another crucial DEflow feature is the possibility of packaging a circuit diagram and reusing it as an individual

component in another circuit (requirement E3 from section 4). Such a component is a so-called hierarchical

component. For example, figure 17 shows how a half-adder can be used to implement a full-adder. This

feature allows the user to manage the design complexity by incrementally building more and more complex

functionalities on top of existing ones. Hierarchical components also avoid duplicate circuit logic. In fact,

using multiple half-adder components is arguably much cleaner than replicating the half-adder logic.

Nonetheless, the introduction of hierarchical components presents a series of challenges. The most inter-

esting ones will be analysed in this subsection.
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API function Description

prepareSimulation

Takes a circuit diagram, the name of the design, and a list of loaded

dependencies.

Runs all the circuit validations and returns a simulation graph

representing the circuit. Returns an error if any of the validations failed.

feedSimulationInput

Takes a simulation graph, the ID of the input component to use to feed

the input signal, and the input signal itself.

Recursively feeds the input in the simulation graph and returns the

updated simulation graph.

feedClockTick

Takes a simulation graph.

Feeds a global clock tick to all synchronous elements in the graph and

returns the updated simulation graph.

extractSimulationIOs
Takes a simulation graph and a list of IDs of input or output components.

Returns the signal currently produced or received by such components.

extractStatefulComponents

Takes a simulation graph.

Returns all the stateful components in the graph (hence their current

states).

Table 5: API provided by the simulator module.

Figure 17: Full-adder designed using two half-adder hierarchical components.
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5.7.1 Hierarchical Components Simulation

Simulating hierarchical components requires the simulator to be aware of the logic they contain. There are

two main approaches to allow this. The first is to transform the simulation into a recursive process, while

the second is to ‘flatten’ all the hierarchical components into a single large simulation graph. This subsection

analyses the benefits and drawbacks of the two approaches.

While all other components have well defined behaviours (for example an AND gate or a D-flip-flop),

hierarchical components behaviour depends on the logic they implement. This means that, when creating

a simulation graph, it is not possible to assign a predefined reducer function to the simulation node. There

exists a clean and recursive solution to this problem: since a hierarchical component is itself a circuit diagram,

it can be transformed into a simulation graph, and this simulation graph can be used as the reducer for the

hierarchical node. This yields that the simulation graph is now a recursive data structure, where certain

nodes can contain other simulation graphs. To better understand this concept, consider again the full-adder

diagram in figure 17. When a new input is fed via the input component A, it gets propagated to the leftmost

half-adder. The half-adder hierarchical component feeds the new input into its internal simulation graph

and extracts the corresponding new outputs. These outputs are then propagated ‘outside’ the half-adder

component.

This recursive design flawlessly scales to an arbitrary number of nested components, keeping the overall

simulation logic mostly unchanged. Furthermore, it makes the simulator aware of the internal structure of

the circuit. This, in turn, makes it possible to create a simulation interface that allows the user to ‘zoom’

into the specific hierarchical components they are interested in. Therefore, users can selectively analyse and

debug the behaviour of such components.

An alternative design is to avoid the recursion in the simulation graph by merging the simulation graphs

of all the hierarchical components into a single, larger simulation graph. This is the approach chosen by

Quartus. In the diagram in figure 17, the half-adder components would therefore be replaced by the actual

half-adder circuit. This approach has been implemented and found to have the following downsides:

• The resulting simulation graph tends to grow very large and have a lot of duplicated logic. This is

highly undesirable when running analysis, because the same logic gets needlessly analysed over and

over, harming performance. For example, if you analyse the half-adder component once and find out

it contains no combinatorial cycles, there is no need to re-analyse its logic again.

• The ‘flattening’ algorithm is complex. In fact, merging together different simulation graphs requires the

creation of extra connections that do not exist in the diagram, and the deletion of others. Furthermore,

each node in the simulation graph is associated with a unique ID, so it is also necessary to explicitly

change all of the IDs to guarantee unicity. Such a complex algorithm is harder to understand and

modify by future maintainers. Not less importantly, it makes it more difficult to prove its correctness.

• A flat simulation graph maintains no information about the original circuit structure. This means that

it would not be possible for the user to explore the behaviour of specific hierarchical components of

their circuit.

Given its major advantages, the recursive approach has been chosen. This decision will affect the algo-

rithm to detect the implementation of combinatorial cycles proposed in section 5.7.3.
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5.7.2 Dependencies Analysis

The introduction of hierarchical components requires changes in the analysis process. This subsection will

present how the content of hierarchical components is analysed, and how DEflow ensures that hierarchical

components do not form dependency cycles.

Consider again the full-adder example (figure 17). In order for DEflow to be able to simulate the

circuit diagram, it must have access to the half-adder diagram. Therefore we define the half-adder to be

a dependency of the full-adder. During the analysis process, a module called DependencyMerger tries to

resolve each dependency by looking it up among the diagrams in the currently open project. If the required

dependency is found, it is analysed in search of design flaws as described in section 5.5.2, otherwise an error is

returned. As the dependency itself may have its own dependencies, this process is recursive. For performance

reasons, DEflow keeps track of what dependencies have been found and analysed, so no dependency is ever

analysed twice.

Another issue that has to be considered is that an inattentive user may introduce a dependency cycle.

For example, if circuit A contains hierarchical component B, while circuit B contains hierarchical component

A, then it is impossible to simulate either circuit. To detect these issues, DEflow builds a dependency graph,

and analyses it in search of cycles. If a dependency cycle is found, DEflow produces a descriptive error

message with information about it.

5.7.3 Combinatorial Cycles Detection

One of the analyses performed by DEflow is checking for the presence of combinatorial cycles. These are not

allowed, as they are an advanced topic that requires the knowledge of the concept of propagation delays,

which is not in the DECA first year syllabus. Note that cycles including synchronous logic (for example a

state machine) are perfectly valid and possible in DEflow.

To better understand how DEflow can detect combinatorial loops, it is helpful to start with a simplified

scenario without hierarchical components. In such a scenario, it is straightforward to determine whether a

component is combinatorial or synchronous just by looking at its component type (for example, an AND gate

is combinatorial while a D-flip-flop is synchronous). What follows is the algorithm to determine the presence

of combinatorial cycles in this simplified scenario (backtracking of cycle components have been omitted for

clarity). The algorithm is largely based on existing methods for cycle detection in a directed graph [14]:

Variables:

graph: the simulation graph

visited: a set containing the visited nodes, initially empty

stack: a set containing the nodes visited in the current recursion stack, initially empty

Algorithm:

1. For every node not inside the visited set:

2. If the node is synchronous it cannot be part of a combinatorial cycle: return

3. If the node is present in the stack, a cycle has been detected: terminate the algorithm with an error

4. If the node is among the visited ones, we have already explored it and determined it is not part of any

cycle (otherwise the algorithm would have terminated already): return

5. Add the current node to the set of visited nodes
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Disallow HC from being part

of cycles

Use heuristic to determine if

HC is safe in cycle

Keep track of combinatorial

paths inside HC

Restrictions
Blocks every design that would

have HC as part of a cycle

Blocks some legitimate designs

such as Mealy state machines
None

Performance
No extra cost with respect to the

baseline algorithm

No extra cost when algorithm runs,

but requires some precalculations

Negligible extra cost as the

algorithm also keeps track of ports

being visited for HC, but requires

some precalculations

Implementation
Simple, treats HC as

combinatorial components

Complex, but can be seen as a

composition of simpler algorithms

Most complex, but can be seen as a

composition of simpler algorithms

Table 6: Comparison of three alternative approaches when determining whether a hierarchical component
is part of a combinatorial cycle. HC stands for ‘Hierarchical Components’.

6. Add the current node to the stack

7. For each child of the node, repeat the algorithm from step 2

8. Remove the current node from the stack and return

This algorithm has O(N +E) = O(E) time complexity, where E is the number of edges in the graph and N

the number of nodes. This directly follows from the fact that a node (hence its outgoing edges) are visited

at most once, thanks to step 4 of the algorithm.

Reintroducing the concept of hierarchical components breaks step 2 of the algorithm. In fact, there is no

way of knowing a-priori whether using the hierarchical component in a cycle may lead to a combinatorial cycle

or not. Consider the case where a hierarchical component is used as part of a combinatorial cycle (in essence,

all other components of the cycle are known to be combinatorial). If such a hierarchical component is, for

example, a half-adder the cycle should be detected as combinatorial and an error should be returned. On

the other hand, if the hierarchical component contains a two bits register the cycle should not be considered

combinatorial and should be allowed by the application.

The problem of determining whether a hierarchical component can be used in a cycle or not can be

approached in three different ways. The simplest way is to consider all hierarchical components as com-

binatorial components, since they might be. Another approach is to use an heuristic to determine if the

hierarchical component could never lead to a combinatorial cycle (in which case the component is safe to

use in a cycle), or if it might lead to combinatorial cycles, though it might not. In particular, the heuristic

considers the hierarchical component to be combinatorial if and only if there is at least one combinatorial

path from one of its inputs to one of its outputs. In other words, if the diagram of the hierarchical component

has a path which connects an input to an output without encountering any synchronous component, then it

is considered combinatorial. Such information can be precalculated before running the cycle detection algo-

rithm. Finally, there exists a third approach which requires a different precalculation: for each input in each

hierarchical component, keep track of what outputs are connected to it via a combinatorial path. When the

cycle detection algorithm reaches an input port of the hierarchical component, it only proceeds exploring the

children of the output ports that are ‘combinatorially connected’ to the input port. This approach requires

the algorithm to keep track of the ports being visited, as well as the nodes. Table 6 proposes a comparison

of these three approaches.

The heuristic approach was initially chosen, as it seemed to strike a good balance between detection
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Figure 18: A non-combinatorial cycle, considered invalid in the old version of the algorithm, as the
heuristic detected the hierarchical component as combinatorial.

Figure 19: Final combinatorial cycle detection algorithm distinguishing between the two cases. The first
diagram contains a combinatorial cycle, while the second does not.
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accuracy and implementation effort. On the downside, that choice imposed restrictions on the diagrams

that were allowed in the application. For example, consider the diagram in figure 18. The design contains

no combinatorial cycles. The hierarchical component is considered combinatorial since it contains a combi-

natorial path from input A to output B-Comb which might lead to combinatorial cycles. Therefore DEflow

highlighted the suspected combinatorial cycle in red, and considered the diagram invalid.

The heuristic was subsequently decided to be insufficiently accurate, as it blocked legitimate and useful

circuits such as Mealy finite state machines [94]. The last approach was instead implemented, which is

more complex but it allows the application to precisely detect all the combinatorial cycles without blocking

any valid design. This approach requires precalculating, for each hierarchical component, which inputs are

‘combinatorially connected’ to which outputs. An input is ‘considered combinatorially’ connected to an

output if there is at least one path from the input to the output encountering no synchronous components.

Such information can be determined with an enhanced depth first search if the hierarchical component does

not contain nested hierarchical components. If there are such nested components, instead, the precalculation

algorithm has to be run recursively inside them first. Therefore, the overall precalculation algorithm can be

seen as a composition of a post-order traversal of the dependency tree, together with a depth first search

in each node of the dependency tree. DEflow optimises this process by keeping track of what dependencies

have been explored to avoid having to re analyse them. Figure 19 shows how the final approach manages to

distinguish between combinatorial and synchronous cycles with hierarchical components.

5.8 Mutability and Performance Optimisations

Throughout this chapter, a series of algorithms have been analysed. Each one of them have been proposed

via a non-language specific pseudocode, and their asymptotic time complexities have been analysed.

All of these algorithms have been implemented using F#. As mentioned in section 3.3.3, F# is a hybrid

language which also supports mutable data types. Carefully using mutability may sometimes be beneficial

for performance or readability, and this subsection will explore how this concept applies in the context of

this project.

In order to achieve the optimal time complexities of the algorithms proposed, it is necessary to use F#

dictionaries, which are based on mutable hash maps with O(1) lookup and insertion time complexity. These

dictionaries are actually a direct port of a mutable C# collection, and do not support useful functions such

as map and fold. F# maps, on the other hand, are immutable and based on a balanced binary search tree.

This means that every map insertion and lookup is O(logN) where N is the number of elements of the map

itself. Therefore, in this case, mutable data would allow to reach optimal time complexity while immutable

data add an extra logarithmic factor to each term (for example O(E) would become O(E ∗ logE)).

Nonetheless, it is arguable that a diagram will hardly have over a hundred components or wires, so the

logarithmic factor can be approximated to Θ(log100) = Θ(7) = Θ(1). This approximation yields that the

expected time complexity of the algorithm remains Θ(E). Furthermore, though using hash maps allows to

achieve the optimal asymptotic time complexity, it will likely not increase the real-world performance of the

algorithms as hashing is an expensive operation and a search in a small binary search tree is generally faster

[5].

Because of these reasons, it was decided to stick to a purely immutable implementation. This allows

the developer to better benefit from the functional programming advantages mentioned in section 3.3.3.
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Additionally, having no mutable variables allows the Expecto testing library to safely run all the testcases

in parallel (see section 6).

5.9 Summary

This section covered the main implementation challenges that have been encountered during the development

of DEflow. Each challenge led to design choices, which alternative approaches have been carefully analysed.

Additionally, a thorough analysis of several graph algorithms have been carried out, with considerations

about possible optimizations.

The implementation directly affects the testing of the application (section 6), as well as the considerations

about code quality presented in section 8.4.
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6 Tests

One of the main emphasis of the project is to deliver an application that can be easily maintained and

extended (requirement D4 from section 4). In this section, we will discuss how DEflow testing plays a key

role in ensuring such properties.

As already discussed in section 5.1, the F# non-testing logic is split into two main sections: the user

interface logic and the core application logic. The former has the role to create the visible layout for the user

to interact with, while the latter contains all the algorithms that allow to analyse and simulate a circuit.

Crucially, the core application logic is written in pure F# and can therefore run under the .NET framework.

On the other hand, the user interface logic can only run when compiled to JavaScript via the Fable compiler.

6.1 Core Application Logic

The core application logic has been extensively tested with the Tests module (see table 3). The testing

infrastructure is based on the Expecto library, which can run under the .NET framework but cannot be

compiled to JavaScript via Fable. Expecto provides very intuitive API to configure and run tests on the

codebase. Furthermore, Expecto runs all tests in parallel by default, which greatly speeds up the testing

process. It is completely safe to use this parallelisation as the core logic being tested contains no mutable

variables that could interfere in concurrent tests.

Having a comprehensive set of tests for core logic offers two major benefits. Firstly, tests ensure the

functional correctness of the algorithms implemented. Such algorithms can sometimes be a few hundreds of

lines of code long, which makes it difficult to guarantee their correctness just by reading the source code.

Secondly, tests allow developers to change the algorithms and have an easy way to assert they did not break

existing functionalities. This type of testing is often referred to as regression testing. Regression testing is

crucial when the codebase grows, as it would become more and more time consuming to manually ensure

the correctness of every algorithm every time a change is made. This, in turn, massively improves the

maintainability and extensibility of the application.

Tests have been built in such a way that they do not rely on assumptions regarding how the underlying

algorithms work. In other words, the logic is tested via the exposed API, rather than with module specific

functions. This ensures that a large amount of unit tests does not have to be rewritten if the internal logic

of an algorithm is changed, for example, due to an optimisation. In fact, no change at all should be required

in such a scenario since an optimisation should not change the behaviour of the algorithm itself.

On the other hand, tests have to be carefully designed in order to cover all the possible behaviours

of the algorithms exposed by the high level module API. This is a non-trivial task that requires a deep

understanding of the code being tested. Nonetheless, once this comprehensive set of tests is in place, it

provides strong guarantees against regression, and it does not unnecessarily slow down the development

process by requiring the change of many small tests.

Testing in a functional programming language requires three main components: an input, the function

to test and the expected output. No other element is needed, as pure functions just transform data without

any side effect. In DEflow, the inputs are always represented by circuit diagrams hardcoded in the testing

logic, with some additional parameters such as dependencies for circuits containing hierarchical components.

More than 70 different circuits are used in the tests. These circuits are generally small (usually less than
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10 components), as they aim to test specific behaviours of the API with the minimal amount of complexity

possible. This greatly facilitates understanding what is going wrong when tests do not pass. Furthermore, a

developer can easily load the circuit in DEflow itself and debug its behaviour via the visual interface, which

is often helpful. Nonetheless, among the test inputs there are a few complex circuits, such as a two bits

adder. This aims to ensure that the logic works for relatively big inputs, but they should not be used as the

primary testing method, as they make it more difficult to understand what part of the algorithm is failing.

Overall, DEflow has more than 140 tests, which cover all the behaviours of the WidthInferer and

Simulator modules logic.

6.2 User Interface Logic

The user interface logic has been extensively manually tested. It was decided that programmatically testing

this logic was unnecessary and undesirable because of the following reasons:

Logic is Modularised The Model-View-Update architecture allows the separation of the UI logic in inde-

pendent views. Each view manages their own part of the model, without affecting the others. Hence,

upon changing part of the user interface it is enough to manually test that the desired changes took

place as expected, while the architecture will ensure that other parts remain unchanged.

Lengthy Setup The UI logic interoperates with JavaScript via modules provided by the Fable compiler.

Therefore, it cannot be run and tested under the .NET framework. This, in turn, means that another

separate testing infrastructure would have to be set up. Such infrastructure would probably be based

on the Jester library [29]. This library is an F# port of Jest [43], which is the testing tool recommended

by the authors of the React framework itself. It allows you to run tests with a simulated browser DOM.

However, setting up a further testing infrastructure is a very time-consuming task, and priority has

been given to adding more features to the application itself.

Constant Evolution Testing the UI logic means generating an HTML view on a virtual DOM and com-

paring it with the expected result. This means that, in order for a test to pass, every element of the

interface has to precisely match the ones encoded in the testcase. Given that the UI often requires

small changes such as rewording an error message or restyling a button, the process of updating the UI

tests becomes very time consuming. This, in turn, would make extending the application cumbersome,

going against one of the requirements of the project itself.

6.3 Summary

In summary, DEflow algorithmic logic has been extensively tested to guarantee correctness and non-regression

upon future changes. DEflow features over 140 tests on more than 70 circuit diagrams. The user interface

relies on the solid MVU architecture in order to guarantee that changes are compartmentalised and cannot

negatively impact separate features.

The considerations about the testing logic presented in this section will be used to inform the evaluation

of the code quality (section 8.4).
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7 Experiment Methodologies

In this section, I will be describing the experiments that have been carried out on DEflow and its alternatives.

The results of these experiments will be used in section 8 to inform the evaluation of usability and performance

of the application.

Three types of experiments will be discussed in this section: a user feedback survey that has been

conducted among university students (subsection 7.1); a comparison against alternative hardware design

platforms that I performed (subsection 7.2); and the design of a large electronic circuit I carried out using

the application itself (subsection 7.3).

7.1 User Feedback Collection

User feedback is a crucial part of the evaluation process of every user-facing application. It allows developers

to get a different point of view on the product they are creating. In fact, certain parts of the application

logic can appear obvious to the engineer that created them, but may not be intuitive to users. Collecting

user feedback allows developers to get this sort of valuable information which can be used to improve the

product itself.

As soon as the core functionalities of DEflow were in place, I decided to start collecting user feedback.

This, in addition to providing useful data to evaluate the usability of the application, also gave me the time

to integrate part of the user feedback in the final project deliverable (which will be discussed in section 8.6).

The user feedback collection has been carried out among university students with previous knowledge

of digital electronics concepts. This aims to mimic the basic knowledge that first year students will have

after receiving an introduction of digital electronics concepts before their first laboratory session. Though

this approximation is imprecise, the alternative was to collect feedback form users with no previous digital

electronics knowledge. Such an approach would have probably not yielded informative results since users

would be mostly confused about digital electronics topics, hence could not make any sensible use of the

application.

It proved difficult to gather volunteers due to both Covid-19 UK lockdown and the overlapping with

the exam term. Nonetheless, nine responses were collected. They mostly come from Imperial College first

year EE students, but also from some Cambridge University Computer Science third year students (who use

Quartus extensively during their second year of studies).

The feedback survey was expected to take around 35 minutes and it was split in three sections:

1. In the first section, volunteers downloaded DEflow and used it to design five small electronic circuits.

At the end of each task, users were asked questions about their experience with the application. For

example, users were asked roughly how long it took them to carry out the proposed task and whether

the various functionalities they used were intuitive.

The five tasks have been chosen to cover most of the core functionalities of the application, without

pushing the volunteers to spend an unreasonable amount of time on them. The tasks required users to

create, validate and simulate: an AND gate, a half-adder, a full-adder, a ROM and a two bits register.

This set of tasks allows users to try to implement circuits with combinatorial and synchronous logic,

as well as buses, memories and hierarchical components.
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Figure 20: Percentile ranks related with SUS scores and letter grades. 50% of applications score more than
68, but only 10% score more than 80. Image credits: [62].

One of the main characteristics of this section is that users have been given minimal guidance for the

tasks. For example, instructions stated to create a project and design an AND gate, but they did not

provide details about the steps involved in such operations. The aim of this choice is to verify that the

application can actually be used intuitively without requiring any user manual.

2. The second section of the questionnaire consisted in the System Usability Scale (SUS) [49, 68]. SUS is

composed of ten statements that each user must rank on a scale from ‘Strongly Disagree’ to ‘Strongly

Agree’. Each user’s response can be used to calculate a ‘usability score’ for the application, ranging

from 0 to 100. A score above 68 is considered above the average, while a score above 80 is considered

excellent. Figure 20 shows the fitting curve for SUS scores.

For DEflow evaluation, it has been decided to remove the first of the ten SUS statements: “I think that

I would like to use this system frequently”. In fact, this statement makes little sense for an educational

software primarily intended to be used in laboratories. DEflow SUS score has therefore been rescaled

from 90 to 100 to make up for the removed points.

SUS is nowadays considered an industry standard to evaluate the usability of digital products. It has

been used in over 1300 publications and it has been observed to be valid (can reliably tell whether a

system has usability issues or not). On the other hand, I decided to not solely rely on SUS as it is

domain agnostic and it can not identify what usability issues the application may have (though it can

point out whether such issues do exist).

3. The third part of the questionnaire indagated users’ experience with Quartus via a series of ‘Strongly

Disagree’ / ‘Strongly Agree’ questions. The aim of this section is to consolidate the understanding of

Quartus usability concerns, as well as collecting users’ opinion on whether DEflow is perceived to be

more intuitive and usable than its counterpart.

Additionally, users were given the option to provide general feedback on the application. This guided
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the addition of the several features which will be described in section 8.6.

The survey responses1 will be presented and analysed in section 8.

7.2 Comparison with Alternative Software

To gauge the benefits of DEflow in the context of DECA teaching, I personally compared it to existing

hardware design platforms. An initial analysis of the high level features of a series of applications was

proposed in section 3.2. That overview allowed me to identify three main candidates that could be used for

teaching digital electronics: Quartus, SimulIDE and BrainBox. Each of these applications has therefore been

thoroughly tested on a series of tasks. This subsection introduces how the testing was carried out, while the

evaluation of the results will be proposed in section 8.2.

DEflow and the three alternative software have been compared on three tasks: creating a half-adder,

creating a full-adder and creating a two bits up counter. Each design has also been analysed (when possible)

and simulated. These tasks allowed me to get an understanding of the capabilities of each application, as

well as providing information regarding their usability. The comparison was based on the features presented

in table 11. The table will be analysed in section 8.2.

Unfortunately, the evaluation of SimulIDE could not be terminated due to a crash in the application

when trying to route wires in the full-adder design. The application could not be restarted as it could not

detect anymore the QT libraries installed in the system. Nonetheless, enough information was gathered to

compare it according to the features in table 11.

7.3 CPU Design in DEflow

While the user feedback and the comparison with alternatives mainly focused on quantifying the usability

of individual features on relatively small tasks, it is crucial to verify that DEflow can be actually used for

complex designs. In order to ensure this, I decided to use the application to implement a four bits RISC

CPU. The CPU design is formed by:

Program Counter The Program Counter is a four bits register that contains the address of the instruction

being currently executed.

Instruction Memory The Instruction Memory is an asynchronous ROM which contains five bits instruc-

tion words. The most significant bit of each instruction encodes the operation mode for the ALU, while

the remaining four bits are used as an immediate operand. The ROM can be programmed before the

beginning of the simulation process.

Decoder This component contains the logic necessary to decode the instructions from the Instruction

Memory and to feed the ALU with the relevant control signals and data.

Arithmetic Logic Unit The Arithmetic Logic Unit (ALU) carries out the arithmetic operations. The

ALU supports a control signal to decide its operation mode, and two four bits operands. There are

two supported modes: addition and subtraction.

1The raw responses can be found at https://docs.google.com/spreadsheets/d/

1am6Sh7xbW5A7GlVn2uATqbrn3z4Z4sS4axUH-1Bz-u8/edit?usp=sharing
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Figure 21: A RISC CPU implemented with DEflow.

Register The Register has the role of storing the result of the ALU operations. It also acts as one of the

two ALU operands.

The top level circuit diagram of the CPU can be found in figure 21.

This experiment will be used in the evaluation (section 8) to inform the considerations about the appli-

cation usability and performance.
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8 Results and Evaluation

This section will present the results of the experiments described in section 7 and provide a critical evaluation

of the project outcomes, in relation to the requirements established in section 4.

First, an evaluation of the usability of the application will be presented in subsection 8.1. Subsection

8.2 will compare the features of the application against existing hardware design software. The performance

of the application will be analysed in subsection 8.3. Subsections 8.4 and 8.5 will concern the quality and

extensibility of the application code. Subsection 8.6 will present the improvements suggested by the users.

Lastly, a reflection on what requirements have been fulfilled will be provided in section 8.7.

8.1 Usability

One of the core requirements of the application is that it ought to have a high degree of usability. Usability

is a broad concept, so I decided to evaluate it using four pillars:

Intuitiveness How quickly can a first time user master a certain feature? Can this be done without

referencing a user manual?

Error Messages How well error messages lead the user toward fixing their issues?

Scalability Can the application be used to create complex designs?

System Usability Scale How well does the application score in the commonly used System Usability

Scale?

Each of these pillars will be thoroughly discussed in the following subsections.

8.1.1 Intuitiveness

The user feedback survey described in section 7.1 contained a series of questions that can be used to evaluate

how intuitive the users perceived the application to be. In fact, at the end of each practical task, the user was

required to roughly estimate the time it took them to complete it, plus some questions about how intuitive

the various features they used were.

It is important to stress out that the questionnaire only provided the minimum amount of instructions

necessary for the user to understand the task they are supposed to perform. For example, the instructions

of the first task were:

1. Open the application.

2. Create a new project called TEST.

3. Crate a new file called and gate.

4. Add an AND gate to the diagram and connect it to two inputs and one output.

5. Run a simulation, change the input values and verify that the AND gate actually works.
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Task
Less than

5 minutes

Less than

10 minutes

Less than

15 minutes

More than

15 minutes

AND gate 100 0 0 0

half-adder 88.9 11.1 0 0

full-adder 55.6 33.3 0 11.1

ROM 66.7 33.3 0 0

2 bits register 77.8 11.1 11.1 0

Table 7: Time taken by the users to perform each questionnaire task. The numbers reported are
percentages.

Task Statement Score

AND gate

Creating a project and a file was intuitive 4.89

Adding components to the diagram was intuitive 4.44

I was quickly able to grasp how to navigate the interface 4.44

half-adder It was easy to create a design with several components 4.55

full-adder
I was quickly able to grasp how to reuse the half adder component 4.33

I was quickly able to understand how to simulate combinatorial logic 4.33

ROM

I was quickly able to understand how to view/edit the memory content 4.67

The memory editing interface was intuitive 4.55

I was quickly able to correctly use multi-bit input/output components 4.44

I was quickly able to make use of multi-bit inputs/outputs in the simulation 4.67

2 bits register

I was quickly able to understand how to merge and split wires 4.00

The wire labelling is clear and useful 4.44

I was quickly able to step through a synchronous simulation 4.00

It is clear that synchronous components are implicitly connected to the global clock 3.67

Table 8: Score associated with each statement after questionnaire tasks. The score is the average of all user
responses, where 5 is ‘Strongly Agree’ and 1 is ‘Strongly Disagree’.

This initial task introduces the user to several new concepts, such as creating a project, creating a file,

adding components to the circuit diagram and simulating the circuit they created. Nonetheless, 100% of the

participants reported that the entire task required them less than 5 minutes to complete (table 7).

Table 7 reports the times taken by the users to perform the five tasks in the questionnaire. Most of the

time, users were able to familiarise with the features of the application and complete the task in less than

5 minutes. Creating and simulating a full-adder proved to be the longest task, probably due to the larger

amount of components in the circuit. One user reported that they struggled to understand how to reuse the

half-adder component they created in the previous exercise, and therefore it took them more than 15 minutes

to complete the full-adder task. DEflow allows users to use previously created components by scrolling to

the bottom of the components catalogue. I expect that, once the user becomes familiar with this concept, it

would take them less than 5 or 10 minutes to complete the task.

After the completion of each task, the users are asked to state their level of agreement with a series of

statements on a scale from ‘Strongly Disagree’ (score 1) to ‘Strongly Agree’ (score 5). Table 8 reports all of
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Task
Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

Number of

responses

AND gate 0 100 0 0 0 1

half-adder 100 0 0 0 0 3

full-adder 100 0 0 0 0 5

ROM 83.3 16.7 0 0 0 6

2 bits register 60 40 0 0 0 5

Table 9: User agreement with the statement “The error messages guided me well toward fixing the
problems” at the end of each task.

these statements and their aggregate scores, obtained by averaging the scores of all the user responses. Since

almost every score is above 4, it can be stated that users are generally pleased with their experience with

the various features, which is also proven by the short execution times reported in table 7. It seems that

the most confusing part of the application is the fact that synchronous components are implicitly connected

to the global clock. Yet, once a user is familiar with such a concept, they should not be confused by that

anymore.

Overall the application seems to be very intuitive, with most of the first time users being able to complete

a variety of tasks in less than five minutes, without a detailed guidance on how to do so.

8.1.2 Error Messages

Requirement D3 (from section 4) focuses on the ability of the application to provide helpful and thorough

feedback for errors. Thanks to its underlying MVU architecture, DEflow can provide immediate feedback

for errors in the form of error notifications and, when relevant, by highlighting parts of the circuit diagram

(see section 5.2 for details).

At the end of each task, users were asked to rate how well the error messages guided them toward the

resolution of the issues (users could skip such questions if they received no error notifications). The collected

responses are summarised in table 9. The number of responses for each task shows that users tended to

complete easier tasks with less errors, which was expected. Users highly appreciated errors for combinatorial

logic design (the first 4 tasks). It is possible that some error messages related to the creation of buses

(necessary in the last task) may be slightly less clear, as the last row has two users not strongly agreeing

with the statement. On the other hand, this may be due to experiment noise given the low number of data

points (only 5 users answered that question in the last task).

In conclusion, users seem to uniformly agree that the error messages are clear and helpful. This is a very

important requirement toward the usability of the application.

8.1.3 Scalability

As the application ought to be used for first year DECA teaching, it must allow students to create complex

designs that are covered by the course syllabus.

In order to verify that DEflow has such capability, it has been used to implement the RISC CPU described

in section 7.3. The implementation process took me slightly less than an hour to complete. I expect an
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experienced DEflow user with a clear understanding of the design that they are going to create to match

this timing. The design process involved the creation of many intermediate components such as a full adder

and a decoder. Creating and handling these components was very easy thanks to the responsiveness of the

application. In fact, upon changing the circuit diagram file, the previous circuit is immediately listed as a

component in the catalogue. The absence of delays when analysing and simulating a circuit also played an

important role in providing a smooth user experience. Finally, the immediate error feedback provided by

the application allowed me to promptly identify and fix the design bugs.

Unfortunately, due to a bug in the JavaScript drawing library it is not currently possible to save the user

changes to the routing of the wires. In other words, if the user moves a wire, then closes and reopen the

diagram, such wire will be automatically rerouted with the default algorithm. This can be annoying when

a user needs to deal with designs with a lot of wires, such as a four bits adder. The bug has been reported

to the creators of the library and it will hopefully be fixed in the next release of the library [16].

In conclusion, the process of implementing a RISC CPU proved to be extremely smooth and pleasurable,

demonstrating that DEflow can indeed be used for large designs.

8.1.4 System Usability Scale

As mentioned in section 7.1, one part of the questionnaire required users to evaluate the application according

to the System Usability Scale (SUS). Such scale is an industry standard for evaluating digital applications.

As previously mentioned, an application that scores 68 on this scale is considered average, while any score

above 80 is considered excellent.

The responses of each user have been recorded and used to evaluate DEflow SUS score. On average,

DEflow scored 84.57, well above the excellence threshold. This result matches the positive feedback obtained

in the previous sections, further confirming that the users appreciate the application.

8.1.5 Summary

This section provided an analysis of DEflow usability based on four pillars: intuitiveness, error messages

quality, scalability and System Usability Scale score. The evaluation was based on both user feedback and

a CPU design I personally made. Overall, each evaluation pillar yielded a very positive result, confirming

that the application is indeed usable.

8.2 Comparison with Alternatives

In order to be adopted for Imperial College EE DECA teaching, DEflow must be preferable over the alter-

native hardware design platforms. In this section, a comparison of DEflow against other software will be

proposed. The comparison is based on the results of the final part of the user feedback survey (which are

reported in table 10) and on the manual testing described in section 7.2.
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# Statement
Strongly

Agree
Agree Neutral Disagree

Strongly

Disagree

1
I tend to get confused in Quartus menus, when I perform

familiar tasks (and I often have to consult a guide/handout)
12.5 0 50 37.5 0

2
I tend to get confused in Quartus menus, when I perform

UNfamiliar tasks (and I often have to consult a guide/handout)
37.5 50 12.5 0 0

3
I was not confused by DEflow menus while performing the

tasks in this questionnaire
25 62.5 12.5 0 0

4
I sometimes struggle to understand error messages in

Quartus
37.5 25 37.5 0 0

5
DEflow errors guided me well toward fixing problems in my

design
50 25 12.5 12.5 0

6
I feel that simulating the circuit is easier in DEflow

than in Quartus
37.5 37.5 0 12.5 12.5

7
I feel like editing the content of memories is easier in DEflow

than in Quartus
37.5 37.5 12.5 12.5 0

8
I feel I could have learnt Digital Electronics concepts with

less guidance if I used a simpler app such as DEflow
50 25 25 0 0

9

Overall, I think using a simplified digital design app such

as DEflow would have improved my Digital Electronics

lab learning experience

37.5 37.5 25 0 0

10 DEflow is more pleasurable to use than Quartus 50 50 0 0 0

Table 10: Results of the third part of the user feedback form (see section 7.1). Statement 3 has been
negated in order to transform it in a positive one (like the other rows). The original statement did not

contain the ‘not’.

57



Requirement Feature SimulIDE BrainBox Quartus DEflow

E1, E2 Combinatorial components 3 3 3 3

E1, E2 Synchronous components 3 3 3 3

E1 Single-bit wires 3 3 3 3

E2 Memories (ROM/RAM) 7 7 3 3

E3 Hierarchical components 7 7 3 3

E4 Multi-bit wires (buses) 7 7 3 3

E5 Inputs and probes 3 3 3 3

E6 Simulator 3 3 3 3

E7 Circuit analyses 7 7 3 3

E8 Save and load circuits 3 3 3 3

E9 Maintained 3 3 3 3

D1 Shallow user search 2 3 3 7 3

D1 Instantaneous circuit analyses – – 7 3

D1 Instantaneous simulation startup 3 3 7 3

D1 Uncluttered user interface 3 3 7 3

D2 Drag and drop (or equivalent) 3 3 3 3 7

D2 Automatic wires routing 7 3 7 3

D2 Automatic bus width inference – – 7 3

D2 Waveform generator 7 3 3 7

D3 Display errors on circuit 7 7 7 3

D4 Extensible by EE students 34 35 7 3

D5 Developer’s documentation 7 3 – 3

D6 Open-source 3 3 7 3

D7 Fully cross-platform 7 3 7 3

Table 11: Comparison of the main features of four hardware design applications. The ‘Requirement’ column
indicates the requirement under which the feature falls (see section 4 for a detailed requirements list).

As mentioned in section 3.2, the existing hardware design platforms that seem to best fit DECA teaching

requirements are SimulIDE, BrainBox and Quartus. In particular, Quartus is the software currently in use

for the DECA laboratories. The experiment described in section 7.2 allowed me to compare the applications

on the list of features proposed in table 11. In the table, each feature is shown together with the requirement

2Users do not have to navigate several menus in order to perform common actions such as inserting components or running
simulations.

3Users can insert new components in the diagram by dragging and dropping them.
4Requires maintainers to familiarise with the QT toolkit.
5Extensions would probably have to be written in JavaScript.
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Figure 22: Undefined behaviour during a simulation of a simple circuit in BrainBox. The output is high
(red colour) even if no voltage is applied to the circuit.

it falls under (from section 4).

There exist two types of requirements: Essential (letter E followed by a number) and Desirable (letter

D followed by a number). The essential requirements are the features that must be part of the application

in order for it to be adoptable for DECA teaching. If those features are missing, the application will not be

versatile enough to allow students to reach the laboratory session objectives. On the other hand, desirable

features can be absent from the application without affecting its ability to be chosen as a teaching tool, but

their absence may negatively impact users’ experience.

Table 11 clearly shows that only DEflow and Quartus have all of the essential features. SimulIDE and

BrainBox, on the other hand, tend to only have the features necessary to design and simulate small circuits.

In fact, they do not help users to handle design complexity since they lack both hierarchical components

and buses. The absence of builtin ROM and RAM memories is also a fundamental shortcoming of these

applications. The last missing essential feature is the ability of running analyses on the circuit design. This

means that the user is allowed, for example, to create circuits with floating wires or wires driven by an

arbitrary amount of signals. In both applications, the simulation behaviour of such circuits seems to be

undefined. For example, figure 22 shows a BrainBox circuit where a wire is driven by two signals, and even

though both signals are low, the component connected to such wire seems to receive a high signal (coloured

in red).

Nonetheless, both SimulIDE and BrainBox seem to meet many of the desirable criteria. This is not

surprising, as they are designed to be teaching tools. They both have an uncluttered user interface, an

instantaneous simulation startup mechanism and the possibility of inserting components into the diagram

via drag and drop. Additionally, both applications are open-source, so they could be extended to introduce

the missing essential features. Unfortunately, SimulIDE appears to be mostly written in QT C++ and

Assembly, and the application developer received complaints about how difficult it is to contribute to the

project [65]. BrainBox is written in JavaScript and makes use of the JQuery library to handle UI updates

[44]. As JavaScript is relatively easy to learn and commonly known, BrainBox would probably be easier to

extend than SimulIDE. Nonetheless, relying on JavaScript as the main programming language for a large

scale project poses some concerns, in particular related to the language type system. Such concerns have

been analysed in section 3.3.3.

Both Quartus and DEflow support all the features that have been deemed as necessary for the tool to

be used for DECA teaching. The big difference between the two applications lies in the set of desirable

features. In fact, Quartus seems to miss many of them. For example, Quartus requires the user to navigate
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several menus in order to start a simulation or create a new circuit diagram. On the other hand, DEflow

focuses on reducing the number of menus as much as possible, to keep a clean interface that users should

have no difficulties navigating. For example, DEflow allows the user to validate the circuit diagram and start

a simulation with just two mouse clicks. The user feedback showed that 89% of the students agreed that

they were “quickly able to grasp how to navigate the [DEflow] interface” with virtually no external guidance.

This data has been obtained by the responses at the end of the first questionnaire task (see table 8), and

confirmed by the results on statement 3 of table 10. On the other hand, 88% of the students agreed that

they struggle to perform unfamiliar tasks with Quartus, and they often have to refer to a manual in order

to complete them (statement 2 in table 10). Similarly, none of the users disagreed about the fact that they

tend to get confused by errors in Quartus (statement 4).

Although statement 6 shows that the majority of the users found that simulating the circuit in DEflow

was easier than in Quartus, 25% of them disagreed. Multiple user comments suggest that this is due to the

lack of the waveform generator feature in DEflow, which is present in Quartus. For example, one user said

“Quartus has a good VWF [Vector Waveform File] generator which would be nice to have in DEflow”.

This comparison has shown that DEflow is the only application that provides the following two features:

automatic buses width inference and displaying errors by highlighting the faulty components and connections

in the circuit. The benefits of the former feature are thoroughly described at the beginning of the section

about the inference algorithm (5.5.1). The latter greatly helps users to precisely grasp what is wrong in their

design and it can be likely accredited for the extremely positive user feedback on error messages discussed

in section 8.1.2.

Another noticeable difference between Quartus and DEflow, is that the former forces the user to wait

a few seconds for the circuit analysis to complete, while such process is instantaneous in the latter. This

is probably due to the fact that Quartus compiles the circuit into a format that can be both simulated

and transformed into a physical circuit, which takes time. On the other hand, DEflow only performs the

validations necessary to ensure the circuit contains no flaws and can therefore be simulated successfully.

Similarly, Quartus takes a few seconds to start a simulation, while DEflow can do so without any delay.

DEflow, like BrainBox, can run on all major platforms (Windows, Linux and MacOS). This is not the case

for SimulIDE and Quartus which cannot natively run on MacOS. Furthermore, since DEflow is open-source

and mostly developed in F#, Imperial College students that attend the third year High Level Programming

EE course will be able to maintain it with minimum extra learning effort.

In conclusion, it seems that DEflow fulfills the success criteria outlined in section 4 better than the

alternatives. This suggests that DEflow is better in the context of DECA laboratories. Statements 8 and 9 of

table 10 show that the users generally agree that using a simplified application like DEflow would have helped

them learn digital electronics concepts with less guidance, improving their overall laboratory experience.

Nonetheless, DEflow usability would probably benefit from the inclusion of some features currently present

in other hardware design platforms, such as waveform generation or components insertion via drag and drop.

Alternative platforms provide several additional features like Raspberry Pi support in BrainBox or analogue

electronics components in SimulIDE, but these are not needed in first year DECA laboratories.
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Algorithm or group

of algorithms

Described in

section

Time

Complexity
Mean (ms)

Standard

Deviation (ms)

Wires width inference 5.5.1 Θ(E) 2.2 0.7

Diagram validations 5.5.2 N/A 3.6 1.1

Feed combinatorial signal 5.6 Θ(Etot) 0.9 0.3

Feed clock tick 5.6.1 Θ(Stot ∗ Etot + Ntot) 29.2 6.8

Cycle detection precalculation 5.7.3 Θ(Etot) 2.5 0.9

Cycle detection 5.7.3 Θ(E) 4.6 1.9

Table 12: Response time measurements for the various algorithms in the application. The measurements
have been carried out on an Intel Core i7 CPU, clocked at 2.5 GHz.

8.3 Performance

Applications which feature a high level of user interactions are time critical. In particular, the productivity

of users highly depends on the responsiveness of the application. For example, a DEflow user adding a

bus to their circuit diagram should see its inferred width immediately, and the system should not get stuck

performing such calculations.

I decided to explore the performance of the application by measuring the response times of the various

algorithms described in section 5. This methodology provides a relatively accurate representation of the

application behaviour, as these algorithms are directly exposed by the API of their respective modules,

hence accounting for virtually the entire API call execution time. A performance analysis of the MVU

interface updates is not presented here, as they are handled by the Elmish-React library and are generally

outside the scope of possible optimisations. Moreover, the underlying React rendering engine ensures that

updates are fast enough to be imperceptible by humans [3, 63].

An analysis of the asymptotic time complexity of the algorithms was already provided in section 5. This

section aims to measure the real world performance of such algorithms by testing them on the CPU design

described in section 7.3. The performance has been informally evaluated by manually running each algorithm

20 times and averaging the response times. These measurements have been carried out using my laptop,

which is powered by an Intel Core i7 of sixth generation clocked at 2.5 GHz. Such informal performance

evaluation aims to determine whether the algorithms are fast enough to be imperceptible by a human user,

rather than providing a detailed performance profile. It is widely believed that response times under 100

milliseconds are perceived as instantaneous by human users [84].

Table 12 reports the results of these measurements, with their corresponding standard deviations. In

the table, E is the number of wires in the circuit, N is the number of components and S is the number

of synchronous components (usually S is much smaller than N). The tot subscript indicates that the

elements nested within hierarchical components are also taken into consideration. All measurements have

been collected on the top level circuit of the CPU design (in figure 21), except for the algorithm to feed a

combinatorial signal into the simulation graph. In fact, this algorithm has been tested on the four bits ALU

circuit, which is the largest largest combinatorial component of the entire CPU. In particular, the test has

been carried out by changing the value of one the two four bits operands from 0x0 to 0xF in order to update

the signal on the maximum possible number of wires.

61



All the algorithms response times are well below the threshold of human perception. Therefore, when

they are run as a result of events triggered in the user interface, the response of the application is perceived

as instantaneous.

Feeding a clock tick into the simulation graph appears to be the slowest algorithm, which is expected as

it has the highest time complexity. An in depth performance analysis of the algorithm seems to suggest that

the process of recursively exploring all the hierarchical components to feed clock ticks accounts for more than

half of the algorithm latency. This is represented by the Ntot factor of the time complexity. Although other

algorithms also need to recursively explore all the hierarchical components, they can optimise this process

by assuming that components of the same type behave the same way. For example, the combinatorial cycle

detection algorithm can assume that if some component has no cycles then all the components of the same

type also have no cycles. Therefore, there is no need to re-analyse them. However, this assumption does not

hold for the ‘feed clock tick’ algorithm. In fact, even if two components are instances of the same hierarchical

component, their internal state may be different during the simulation and therefore they have to be treated

separately.

This higher algorithm latency may become an issue if the user wants to let a simulation unroll for

hundreds or thousands or clock cycles. For example, simulating 100 clock ticks of the CPU would probably

take around 3 seconds to complete. Approaches that could be used to speed up the simulation process are

described in the next subsection.

8.3.1 Simulator Performance Improvements

In this subsection, I will discuss how the performance of the simulator can be improved. These improvements

fall under two main categories: systematic improvements and algorithmic improvements.

First, I will discuss how the technology stack limits the performance, and therefore how we may system-

atically improve upon it. Unfortunately, though functional programming languages are very expressive and

convenient, they tend to suffer in terms of performance. Because of their high-level nature, they rely on

garbage collection and do not permit low-level optimizations. Furthermore, it seems that running JavaScript

code compiled from F# via Fable leads to further performance loss with respect to running the same F#

code directly under .NET [28].

In order to avoid such overheads, one could run the simulator logic directly under .NET using edge.js

[20, 19]. In fact, this tool allows to invoke .NET programs from a Node.js application with low overheads.

Another (more radical) idea that can lead to performance improvements is rewriting the performance-

critical sections of the simulator in C++ and compiling them to WebAssembly [75, 34]. WebAssembly is a

binary instruction format which can be executed on a browser (hence on Electron). This approach would

be beneficial for performance for two reasons. First, the browser can run WebAssembly code at near native

speed, therefore removing part of the overhead that comes with running web applications [74]. Second,

rewriting the code in C++ would allow the developers to implement a series of low-level optimizations not

possible in F#. On the other hand, this interaction with WebAssembly may be complex to set up and could

affect the maintainability of the application itself.

Alternatively, we may consider algorithmic improvements. For example, one could keep track of what

synchronous components have received new signals and only update those during the next clock tick. Unfor-

tunately, it is unclear whether this approach would actually lead to performance improvements, as the cost
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of maintaining the tracking data structure may outweigh the benefits of skipping some synchronous compo-

nents updates. In fact, optimisations that are already in place ensure that only the outputs that changed

get propagated into the combinatorial logic, so this optimisation would only save the time of recalculating

some unchanged components state.

Also, there exists an interesting optimisation that aims to cut the time taken to explore hierarchical

components while searching for synchronous components. In fact, there is no need to search for clocked

components within big hierarchical combinatorial components such as an ALU. The information about

which hierarchical components do not contain any synchronous logic can be cheaply precalculated. Manually

instructing the simulator to not look for synchronous components within the ALU of the RISC CPU cut

the ‘feed clock tick’ latency to around 12 ms. Given its simplicity, this approach seems to be extremely

promising, in particular for circuits with large purely combinatorial elements.

Finally, providing more complex builtin components, such as an N-bits adder, will probably speed up the

simulation process. Such larger components will have a simulation performance similar to the other basic

components such as simple gates. This will be faster than simulating the same digital logic implemented via

hierarchical components. On the other hand, this approach can only target commonly used circuits such as

the aforementioned N-bits adder.

8.3.2 Summary

In conclusion, the performance of the algorithms seems to be order of magnitude below the threshold of

human perception. This guarantees that the application feels highly responsive to the user. Nonetheless, in

case a user wants to run lengthy simulations they may experience delays in the range of seconds. Approaches

to speed up such a process have been proposed in subsection 8.3.1.

8.4 Code Quality

One of the core focus of the project is on maintainability and extensibility, which tend to be highly correlated

with the quality of the code. Objectively assessing such a property is a challenging task, but defining some

qualitative metrics can help greatly. In this section, such qualitative metrics will be investigated.

Code Modularisation Code modularisation is fundamental for understandability, extensibility and testa-

bility. In fact a well modularised code allows developers to make isolated changes without the risk of

breaking unrelated functionalities of the application. As thoroughly described in section 5.1, DEflow

codebase is divided among core application logic, user interface logic and testing logic. Each of these

macro-modules is internally split into several smaller modules. For example, the user interface logic is

split among several independent views, while the core application logic is split between Width Inferer

logic and Simulator logic. The latter is further split into several independent components, such as the

circuit analyser, the simulator graph builder, the dependency merger and so on.

Overall, DEflow codebase heavily relies on modularisation in order to guarantee maintainability. Mod-

ularisation is greatly facilitated by the use of functional programming concepts, which have been

extended to the user interface logic thanks to the adoption of Functional Reactive Programming (see

section 5.2). In fact, since pure functions are stateless, it is possible to characterise a module just

in terms of its inputs and its outputs. Other parts of the codebase can be agnostic of the internal
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behaviours of the modules. This encapsulation is critical to the idea of Application Programming

Interfaces (API).

API Clarity API are interfaces that define the interaction between the different modules in the application.

In order to fully exploit the advantages of code modularisation, each module should expose their

capabilities in a clear and intuitive way. In DEflow, this is done at every level of the modularisation

hierarchy. For example, a large module such as the Simulator exposes its functionalities via the

functions described in table 5. These API strive to be clear and intuitive by making use of descriptive

names and explanatory input and output data types.

As mentioned above, the simulator itself is split into several submodules (usually, just an F# file)

which expose their functionalities via API and hide their implementation by using private functions

(which cannot be accessed from other files). For example the module that analyses the circuit state has

a single API function called analyseState which takes in input a circuit state and optionally returns

an error.

Types Clarity As mentioned in section 3.3.3, one of the main strengths of F# resides in its type system.

In order to successfully exploit the benefits of static type checking, the developer must make a good

use of type definitions. Additionally, descriptive type definitions greatly help in understanding the

modules API.

DEflow types structure closely follows the modularisation of the application. In fact, each module

has their own set of types. For example, there exist a set of extra types used in the simulator and a

separate set of extra types used in the user interface. Additionally, there exist some types that are

used across all modules, such as the type to represent a circuit diagram.

In order to maximise the help that the type checker can provide, I relied on generic types only for

functions that have to deal with unspecified types. A series of utility functions, such as inserting

an element at a specific index in a list, fall under this category. In the overwhelming majority of

cases, DEflow types strive to precisely map the data domain being modeled thanks to the use of F#

discriminated unions (DU) and records. Tuples have been generally avoided in favour of records, as the

latter support descriptive named fields. Nonetheless, tuples have been used when it proved useful for

pattern matching and in the cases where the nature of the tuple elements was clear from the context.

As an example of type definition in DEflow, consider the type Component, which represents a circuit

component and is defined in src/Common/Types.fs. This is a record containing: a string that uniquely

identifies the component; the component typology (for example, AND gate or D-flip-flop), which is a

DU; a string representing the component label; a list of input ports, where each port is represented

by a record type; a list of output ports; and finally two integers representing the x and y coordinates

of the component in the diagram. This type precisely maps all the information needed to represent a

component.

DEflow precise type definitions allow the compiler to provide very helpful suggestions and error mes-

sages. In turn, these allowed me to spot and fix almost every bug before the code was even run. For

example, the initial version of the Width Inferer module (which was around 400 lines of code), was

entirely bug free before the first execution.
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Immutability and Functional Style One of the core aspects of all functional programming languages is

data immutability. Using immutable data means that the developer does not have to worry about state

maintenance. As discussed in section 3.3.3, F# is actually a hybrid programming language, therefore

it also supports mutable data and Object Oriented Programming constructs.

In order to fully benefit from the use of a functional programming language, I tried to avoid mutable

data as much as possible. In fact, the core application and testing logic exclusively use immutable

data. This did not negatively impact algorithms performance, as explained in section 5.8. Thanks to

the use of Functional Reactive Programming, the user interface logic can also almost entirely adhere

to this functional style, except for two cases. The first, is a couple of variables in the F# wrapper for

the draw2d JavaScript library. Such variables, in fact, have the role of maintaining the mutable state

of the circuit diagram object provided by the draw2d library, and therefore they have to be mutable

(see section 5.2.1). The second time mutable data was used was in the boilerplate code to set up the

Electron application.

Sticking to an almost pure functional style makes the code much more predictable and easy to reason

about, as data will not change when passed to functions and functions will have no side-effects. This,

in turn, greatly helps maintainability.

Tests Coverage DEflow testing methodology has been thoroughly discussed in section 6. The regression

testing infrastructure entirely covers the part of the codebase that can be run under the .NET frame-

work. This includes the core application logic, which represents roughly 49% of the F# codebase

(excluding the testing logic itself). Though one may think that a 100% testing coverage may be desir-

able, it would probably sensibly slow down development. In fact testing the user interface has several

drawbacks, which have been described in section 6.2.

In summary, all the algorithmically complex parts of the application are thoroughly tested, which

greatly increases the confidence of not breaking functionalities when making changes to the application.

On the other hand, the user interface code is intended to be manually tested, since updating the user

interface tests at every change would become a very time consuming task.

F# Dependencies DEflow is mostly developed in F# and, as any large software project, it has a series of

dependencies. F# dependencies are managed via paket [53], which is the standard package manager

for .NET projects. The main F# dependencies are Fable (provides utilities to interoperate with

JavaScript), Elmish (to use the MVU architecture) and Fulma (style library for the user interface).

JS Dependencies DEflow is based on Electron, which, in turn, relies on Node.js in order to run JavaScript

code outside the Chromium sandbox. JavaScript dependencies are managed by the powerful yarn

dependency manager [80]. The main JavaScript dependencies for this project are JQuery (used by the

draw2d library), draw2d (which is the graphics library chosen used to draw circuit diagrams), React

(which is used as rendering library for the MVU architecture) and webpack (which is the module

bundler).

Relying on a series of dependencies is necessary to build large scale projects such as DEflow. DEflow

dependencies are all high quality and actively maintained. Particular attention has to be given to

draw2d, as DEflow contains some custom extensions to it. Such extensions are extremely unlikely to
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break for future versions of the library as they are based on one of the core elements of the library.

This means that a change that would break the custom extensions would probably also break the vast

majority of other library functionalities, hence it is very unlikely to happen.

Packaging and Deployment Electron allows DEflow to benefit from the advantages of the web ecosystem,

such as being cross-platform by design. DEflow has a series of scripts which let the developer to package

the application for the three major operating systems with just one terminal command. This, in turn,

allows the developer to deploy new versions of the application with minimal effort.

In summary, the metrics indicated in this section seem to prove that DEflow codebase is highly main-

tainable and extensible. This directly follows from the extensive use of code modularisation, functional

style and descriptive data types. Additionally, the large set of regression tests for the algorithmic logic

of the application ensure that it will be possible to make changes without unknowingly breaking existing

functionalities.

8.5 Extensibility Example

One of the goals of this project is to produce an easily extensible application (requirement D4 from section

4). Arguments about the application extensibility have already been proposed in subsection 8.4. This

subsection will demonstrate the extensibility of DEflow by describing the process of adding the ‘D-flip-flop

with enable’ (DFFE) component to the list of builtin components. The code for these changes can be found

at https://github.com/ms8817/DEflow/commit/d0085b0.

This specific task has been chosen as it touches every section of the application codebase: the JavaScript

extensions, the user interface logic, the core application logic and the testing logic. On the other hand, user

interface improvements and algorithmic changes generally require modifications to only one or two files, so

they are of lower interest here. The process of adding the DFFE is the following:

1. The first step is to add a small amount of extension code to the draw2d library. This extension defines

the shape and look of the component in the diagram. In order to allow the user to add an instance

of the component to the diagram, the extension must be exposed to the F# code via the draw2d F#

wrapper, which involves adding a few trivial lines of code.

2. The second step involves updating the user interface. This allows users to see the DFFE listed in the

components catalogue and to see its description and label when selected in the diagram. To do so, the

developer has to add a few simple lines in both the catalogue view and selected component view.

3. The third step is to instruct the application on how to deal with the newly defined component. This

requires small additions to the Width Inferer and Simulator logic. The Width Inferer must be informed

about the widths of the DFFE inputs (two single-bit wires) and outputs (one single-bit wire). The

Simulator has to know the behaviour of the component during the simulation, which varies depending

on whether the simulation step is a clock tick or not.

4. Finally, a set of tests can be added to test if the new component behaves as expected.
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This set of changes (including tests) took me around 25 minutes to complete, and no bugs were introduced.

The whole process is heavily guided by the presence of many other existing components, and it should be

relatively easy to perform even by a new maintainer. Furthermore, steps 2 and 3 are guided by the F#

compiler which detects that the pattern matching case for the new component has not been covered yet, and

precisely hints where changes should be made. In the case of the DFFE component, the set of changes adds

up to around 90 lines of code in 10 files (excluding tests).

8.6 Application Improvements

As mentioned in section 7.1, users were given the option to leave suggestions for improvements if they wished

to do so. This subsection presents a collection of such suggested improvements. This set of improvements

has been augmented with my own personal considerations which I collected while comparing DEflow with

alternative applications (see 7.2) and while designing the RISC CPU (see 7.3).

The possible improvements are ordered by benefit for the user (highest to lowest) in table 13, with an

estimate of the amount of time required for their implementation. Note that the value of the benefit does

not reflect the relative importance of the various features (in essence, ‘benefit 2’ is not twice as beneficial

as ‘benefit 1’) but it does provide a scale to order the features by importance. In order to improve the

application as much as I could in the time from the completion of the evaluation to the project deadline, I

focused on the high-benefit low-difficulty features (toward the top of the table). Most features are related

to the user interface and do not require changes to the algorithmic part of the codebase.

8.7 Reflection on Requirements

A detailed evaluation of the application from several standpoints have been provided in the previous sub-

sections. This subsection will instead summarise the main capabilities of DEflow, to determine whether

and to what extent the initial requirements have been met. Each requirement from the requirements cap-

ture (section 4) will be referred to using their identifier. Identifiers starting with letter E indicate essential

requirements, while those beginning with letter D refer to desirable features.

E1 DEflow includes an interactive circuit diagram interface that allows users to design both combinatorial

and synchronous circuits.

E2 DEflow allows users to select and add components to the circuit via a components catalogue. The

catalogue contains numerous digital electronics components including gates, flip-flops, registers, ROMs,

RAMs, multiplexers and demultiplexers.

E3 Users can use DEflow to package their combinatorial or synchronous circuits into a single component

that gets listed in the catalogue. Such a component can then be reused in the following designs.

E4 DEflow supports buses.

E5 DEflow allows users to inject signals in their designs and probe specific wires by using the input and

output components, respectively.
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Feature description Done
(Estimated)

time required
Benefit

N-bits register 3 Low
9

D-flip-flop with synchronous enable 3 Low

Waveform generator in simulation 7 High 8

Improve current simulation UI 3 Medium
7

Multiplexer and Demultiplexer allow buses 3 Low

Common keyboard shortcuts 3 Low

6Insert components into diagram via Drag and Drop 7 Medium

Larger number of properties can be changed from the

‘components properties’ menu
3 Low

Use small endian representation for signal in buses 3 Low

5Constant input signals (not settable in simulation) 7 Low

Ignore output signal (not shown in simulation) 7 Low

End simulation when changing file 7 Low
4

Show clock tick number in simulation 7 Low

Improve simulator performance 7 Medium

3
N-bits adder (for performance) 7 Low

Explicit ‘global clock generator’ component 7 Medium

Library of prebuilt hierarchical components 7 Medium

Show list of recently opened projects 7 Low 2

Autofocus text boxes in created popups 7 Low 1

Table 13: Possible improvements to the application, ranked by benefit. ‘Low’ indicates less than 2 hours,
‘Medium’ less than 5 hours, ‘High’ more than 5 hours.
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E6 DEflow supports an interface that allows users to feed combinatorial inputs and clock ticks into a

simulation and visualise the produced outputs. Additionally, users can inspect the state of stateful

components such as flip-flops, registers and RAMs at any time during the simulation.

E7 DEflow contains an analysis tool that validates the circuit diagram. Several validations are carried out,

such as combinatorial cycle detection and wires width consistency (see section 5.5.2 for details).

E8 DEflow allows users to save and load circuit diagrams. Additionally, the application supports a concept

of project, which allows users to easily handle and reuse their designs in the form of hierarchical

components.

E9 DEflow will be maintained and extended by an UROP student in the summer 2020. Afterwards, it is

likely that groups of third year students will take over its maintenance and extension as part of their

High Level Programming course project.

D1 User testing results presented in section 8.1 seems to suggest that DEflow interface is very intuitive and

clear. Additionally the analysis performed in section 8.3 indicates that the application is responsive in

every scenario except for when the user requires to run lengthy simulations. In such a scenario, they

may have to wait a few seconds before being able to visualise the results.

D2 DEflow offers a series of extra features to facilitate the hardware design process, such as auto-routing

of wires and automatic bus width inference. Endless possibilities for extensions exist, and the most

promising ones will be discussed in the ‘Further Work’ section (9.1).

D3 DEflow greatly focuses on providing understandable and thorough error messages. Furthermore, it

enables the visualisation of such errors directly on the circuit diagram. Users unanimously agreed that

such errors were clear and guided them well toward the resolution of their problems (see section 8.1.2).

D4 Since DEflow is mostly implemented in F# and this language is taught in Imperial College third year

High Level Programming course, it should be reasonably easy to extend and maintain by Imperial

College EE students.

D5 This document, together with the information provided in the project README, guarantee that a

developer has enough information to confidently start making changes to DEflow.

D6 DEflow is open-source and free to use for all. Institutions and individuals outside Imperial will be given

the opportunity to use and modify the application, but not to use it for commercial objectives. In fact,

the application will be distributed with a GPLv3 license [36].

D7 DEflow is deployed as a packaged Electron application. This means that students with devices running

either Windows, Linux or MacOS will be able to install the application on their systems. The in-

stallation process involves downloading a zipped file and running the pre-built application executable

that can be found inside. None of the users that contributed to the feedback collection reported any

difficulty in setting up and running DEflow.

In conclusion, DEflow meets all the essential requirements and can therefore be used as a teaching tool in

first year Imperial College EE DECA laboratories. Desirable features D3, D4, D5, D6 and D7 have also been
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fully implemented. Desirable feature D1 can be considered mostly met, as the application has been found

to be intuitive, clear and responsive. Nonetheless, upon running long simulations the user may experience

some delays before being able to visualise the results. Approaches to speed up the circuit simulation have

been suggested in section 8.3.1. Given the very open ended nature of desirable feature D2, it can hardly be

considered fully met. Several helpful circuit design functionalities such as wires auto-routing and automatic

bus width inference have been implemented, but many more exist and will be the main subject of section

9.1.
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9 Conclusion

In conclusion, this project resulted in a cross-platform hardware design application that (in the context of

introductory digital electronics teaching) has been proven to be more usable and intuitive than its alterna-

tives, such as Quartus. This has been ensured by collecting feedback from users which were familiar with

Quartus, by performing a manual features comparison against several hardware design applications, and by

designing a RISC CPU (see sections 7 and 8).

One of the most challenging parts of the project was setting up a software infrastructure that is easy

to maintain and extend in the future. As thoroughly described in section 5, this infrastructure relies on

the power of both Functional Reactive Programming and the F# programming language. Setting up this

infrastructure required me to familiarise with numerous technologies such as Electron, Node.js, React, MVU

architecture and packet managers for both JavaScript and F#. In the end, the choice of technologies for the

project proved to be extremely successful. This was demonstrated by the fact that I was able to develop a

fully functional hardware design application that is better than existing large scale industrial alternatives in

the context of DECA teaching.

The design, implementation and optimisation of several graph algorithms also proved to be a challenging

task (see section 5). In fact, though I had experience with implementing sophisticated algorithms before, I

never did it in a functional programming language. Implementing performance critical algorithms which are

several hundreds lines of code long with immutable data proved to be a very interesting learning experience,

which consolidated my functional programming skills. The most algorithmically complex problem was the

combinatorial cycle detection with hierarchical components (see end of section 5.7.3). This requires precal-

culating combinatorial paths via a post-order dependency tree traversal where each tree node is a graph on

which an enhanced depth first search is run.

All of the essential requirements described in section 4 have been fully met. Furthermore, as discussed

in section 8.7, most of the desirable features for the application have also been implemented. Given more

time, the work could be taken further by the addition of the features described in subsection 9.1.

9.1 Further Work

As discussed in section 8.4, the application can be easily extended to support new features. This section

aims to determine what extra features could be valuable to add to the application in the future.

Table 13 in section 8.6 presented a list of features that DEflow would benefit from having. Some of these

have been implemented before the project deadline, but given the short project timespan it proved to be

difficult to add them all. Nonetheless, in order to facilitate the job of a future maintainer, I created some stubs

in the code to show how the most complex of those features, waveform generation, can be implemented6.

These stubs should allow a maintainer which has read this document to have enough guidance to get started

extending DEflow functionalities. Furthermore, the modularised nature of the codebase ensures that they

can tackle that task without risking to break any other existing functionality.

More advanced functionalities that the application could benefit from having are:

• Define the behaviour of custom combinatorial components using a Verilog subset. This feature requires

6The stubs can be found in this branch: https://github.com/ms8817/DEflow/tree/waveform-stubs
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the application to support a basic text editor. Such an editor can be implemented from scratch, by

using a small React based text editor library such as react-simple-code-editor [61], or by wrapping a

powerful non-functional code editor library. Though using a small React component is probably the

best solution, an example of how to wrap the powerful CodeMirror [11] text editor can be found in an

older version of the application7.

• Synthesise Verilog code from the circuit diagram, which can be then used to program an FPGA.

• Import/export the content of DEflow memories from/to MIFs (Memory Initialisation Files), which are

used in other software such as Quartus.

• Export simulation data in a standard file format such as VCD (Value Change Dump) or LTX (inter-

Laced eXtensible Trace). These files can be then used to perform a post-mortem simulation visualisa-

tion on other tools such as GTKWave [37].

9.2 Final Thoughts

The creation of a hardware design platform was both a highly challenging and rewarding experience. I

am extremely satisfied with the outcomes of the project, which gave me the opportunity to display the

engineering skills I gained throughout the course of my degree.

7It has been removed in commit: https://github.com/ms8817/DEflow/commit/9d264953
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Appendices

A Guides

This section provides information on how to get started with the application both as users and developers.

Users may want to refer to subsection A.1, while developers may refer to subsection A.2.

A.1 User’s Guide

The application can be downloaded from https://github.com/ms8817/DEflow/releases. The page also

contains all the necessary information to run it.

A.2 Developer’s Guide

DEflow is a large system with many functionalities, but there exist several improvements and additions that

can be made. This section will summarise the most useful resources for a DEflow maintainer.

The DEflow codebase can be found on GitHub at https://github.com/ms8817/DEflow. Making a good

use of version control is crucial to maintain a clean and structured repository, therefore it is important to be

comfortable with such concepts. There exists many guides online to learn these technologies [2], and articles

about best practices to follow [71].

Section 5.1 provides a high level overview of the codebase and presents the rationale for the separation

of the application code into three main parts: user interface logic, core application logic and testing logic.

Each part makes use of a slightly different set of technologies, which is worthwhile familiarising with:

User Interface Logic As explained in section 5.2, the user interface logic is based on the Model-View-

Update (MVU) architecture. MVU is an implementation of the Functional Reactive Programming

paradigm. Section 3.3.4 gives a comprehensive overview of the concept of Functional Reactive Pro-

gramming, while section 3.4 provides an example of a basic F# MVU application created with the

Elmish library. The Elmish official site [25] has also an informative and short introduction to the

library, which is worth reading. Furthermore, as Elmish relies on React for rendering, it may be useful

to familiarise with how React works [59]. This will allow developers to have a deeper understanding

of the final behaviour of the application user interface, and ultimately achieve better performance.

Additionally, the maintainer should be familiar with how the stateful draw2d library has been wrapped

and used in DEflow, which is explained in section 5.2.1. Looking at the already implemented extensions

should be enough to get familiar with the library and understanding how to further extend it. In case

more details are required, the maintainer may refer to the excellent draw2d documentation [17].

An in-depth knowledge of JavaScript should not be required, as a little amount of code is likely to be

written in that language. Furthermore such code will be largely similar to the existing extensions code.

An in-depth knowledge of CSS and HTML is not required either, as the interface is generated via F#.

The Fulma documentation [33] will likely be useful as reference.
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Core Application Logic The core application logic is implemented in F#, using solely pure functions and

immutable data. If algorithmic changes have to be made, it is important to read the related subsection

of section 5. For example, for changes to the widths inferrer algorithm, refer to subsection 5.5.1.

Testing Logic Though new tests will be added, the testing infrastructure is very unlikely to require changes.

It is important to understand the decisions that have been made for DEflow testing, which are explained

in section 6. In order to create a test, it is necessary to design a circuit diagram and to define a series of

inputs and expected outputs for it. The circuit diagram can be designed using DEflow itself. Then, the

data structure representing the circuit diagram can be logged to the Chromium console and transformed

into an F# data structure by one of the scripts provided in the repository. There are over a hundred

tests and they all share the same structure, so there should be plenty of guidance for this task.

The repository README contains a detailed guide on how to setup the development environment and

install all the necessary dependencies.

The maintainer can refer to section 8.5 for an example of how to add a new component to the application.

This example is of particular interest as it touches all the parts of the application codebase.

Additional features that DEflow would benefit from having are presented in section 9.1. The best starting

point would probably be adding a waveform visualiser for the simulation, as I already prepared a series of

stubs that can guide the implementation of such a feature (see branch ‘waveform-stubs’ in the repository).
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